Month End Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: buysanta

Exact2Pass Menu

Question # 4

A Generative AI Engineer has been asked to build an LLM-based question-answering application. The application should take into account new documents that are frequently published. The engineer wants to build this application with the least cost and least development effort and have it operate at the lowest cost possible.

Which combination of chaining components and configuration meets these requirements?

A.

For the application a prompt, a retriever, and an LLM are required. The retriever output is inserted into the prompt which is given to the LLM to generate answers.

B.

The LLM needs to be frequently with the new documents in order to provide most up-to-date answers.

C.

For the question-answering application, prompt engineering and an LLM are required to generate answers.

D.

For the application a prompt, an agent and a fine-tuned LLM are required. The agent is used by the LLM to retrieve relevant content that is inserted into the prompt which is given to the LLM to generate answers.

Full Access
Question # 5

A Generative AI Engineer is building an LLM to generate article summaries in the form of a type of poem, such as a haiku, given the article content. However, the initial output from the LLM does not match the desired tone or style.

Which approach will NOT improve the LLM’s response to achieve the desired response?

A.

Provide the LLM with a prompt that explicitly instructs it to generate text in the desired tone and style

B.

Use a neutralizer to normalize the tone and style of the underlying documents

C.

Include few-shot examples in the prompt to the LLM

D.

Fine-tune the LLM on a dataset of desired tone and style

Full Access
Question # 6

A Generative AI Engineer has been asked to design an LLM-based application that accomplishes the following business objective: answer employee HR questions using HR PDF documentation.

Which set of high level tasks should the Generative AI Engineer's system perform?

A.

Calculate averaged embeddings for each HR document, compare embeddings to user query to find the best document. Pass the best document with the user query into an LLM with a large context window to generate a response to the employee.

B.

Use an LLM to summarize HR documentation. Provide summaries of documentation and user query into an LLM with a large context window to generate a response to the user.

C.

Create an interaction matrix of historical employee questions and HR documentation. Use ALS to factorize the matrix and create embeddings. Calculate the embeddings of new queries and use them to find the best HR documentation. Use an LLM to generate a response to the employee question based upon the documentation retrieved.

D.

Split HR documentation into chunks and embed into a vector store. Use the employee question to retrieve best matched chunks of documentation, and use the LLM to generate a response to the employee based upon the documentation retrieved.

Full Access
Question # 7

A Generative Al Engineer wants their (inetuned LLMs in their prod Databncks workspace available for testing in their dev workspace as well. All of their workspaces are Unity Catalog enabled and they are currently logging their models into the Model Registry in MLflow.

What is the most cost-effective and secure option for the Generative Al Engineer to accomplish their gAi?

A.

Use an external model registry which can be accessed from all workspaces

B.

Setup a script to export the model from prod and import it to dev.

C.

Setup a duplicate training pipeline in dev, so that an identical model is available in dev.

D.

Use MLflow to log the model directly into Unity Catalog, and enable READ access in the dev workspace to the model.

Full Access
Question # 8

Which TWO chain components are required for building a basic LLM-enabled chat application that includes conversational capabilities, knowledge retrieval, and contextual memory?

A.

(Q)

B.

Vector Stores

C.

Conversation Buffer Memory

D.

External tools

E.

Chat loaders

F.

React Components

Full Access
Question # 9

Which indicator should be considered to evaluate the safety of the LLM outputs when qualitatively assessing LLM responses for a translation use case?

A.

The ability to generate responses in code

B.

The similarity to the previous language

C.

The latency of the response and the length of text generated

D.

The accuracy and relevance of the responses

Full Access
Question # 10

A Generative Al Engineer is using an LLM to classify species of edible mushrooms based on text descriptions of certain features. The model is returning accurate responses in testing and the Generative Al Engineer is confident they have the correct list of possible labels, but the output frequently contains additional reasoning in the answer when the Generative Al Engineer only wants to return the label with no additional text.

Which action should they take to elicit the desired behavior from this LLM?

A.

Use few snot prompting to instruct the model on expected output format

B.

Use zero shot prompting to instruct the model on expected output format

C.

Use zero shot chain-of-thought prompting to prevent a verbose output format

D.

Use a system prompt to instruct the model to be succinct in its answer

Full Access
Question # 11

A Generative Al Engineer is building a system which will answer questions on latest stock news articles.

Which will NOT help with ensuring the outputs are relevant to financial news?

A.

Implement a comprehensive guardrail framework that includes policies for content filters tailored to the finance sector.

B.

Increase the compute to improve processing speed of questions to allow greater relevancy analysis

C Implement a profanity filter to screen out offensive language

C.

Incorporate manual reviews to correct any problematic outputs prior to sending to the users

Full Access
Question # 12

A Generative Al Engineer is tasked with improving the RAG quality by addressing its inflammatory outputs.

Which action would be most effective in mitigating the problem of offensive text outputs?

A.

Increase the frequency of upstream data updates

B.

Inform the user of the expected RAG behavior

C.

Restrict access to the data sources to a limited number of users

D.

Curate upstream data properly that includes manual review before it is fed into the RAG system

Full Access
Question # 13

A Generative AI Engineer is designing an LLM-powered live sports commentary platform. The platform provides real-time updates and LLM-generated analyses for any users who would like to have live summaries, rather than reading a series of potentially outdated news articles.

Which tool below will give the platform access to real-time data for generating game analyses based on the latest game scores?

A.

DatabrickslQ

B.

Foundation Model APIs

C.

Feature Serving

D.

AutoML

Full Access
Question # 14

A Generative Al Engineer is responsible for developing a chatbot to enable their company’s internal HelpDesk Call Center team to more quickly find related tickets and provide resolution. While creating the GenAI application work breakdown tasks for this project, they realize they need to start planningwhich data sources (either Unity Catalog volume or Delta table) they could choose for this application. They have collected several candidate data sources for consideration:

call_rep_history: a Delta table with primary keys representative_id, call_id. This table is maintained to calculate representatives’ call resolution from fields call_duration and call start_time.

transcript Volume: a Unity Catalog Volume of all recordings as a *.wav files, but also a text transcript as *.txt files.

call_cust_history: a Delta table with primary keys customer_id, cal1_id. This table is maintained to calculate how much internal customers use the HelpDesk to make sure that the charge back model is consistent with actual service use.

call_detail: a Delta table that includes a snapshot of all call details updated hourly. It includes root_cause and resolution fields, but those fields may be empty for calls that are still active.

maintenance_schedule – a Delta table that includes a listing of both HelpDesk application outages as well as planned upcoming maintenance downtimes.

They need sources that could add context to best identify ticket root cause and resolution.

Which TWO sources do that? (Choose two.)

A.

call_cust_history

B.

maintenance_schedule

C.

call_rep_history

D.

call_detail

E.

transcript Volume

Full Access
Question # 15

What is the most suitable library for building a multi-step LLM-based workflow?

A.

Pandas

B.

TensorFlow

C.

PySpark

D.

LangChain

Full Access
Question # 16

A Generative AI Engineer wants to build an LLM-based solution to help a restaurant improve its online customer experience with bookings by automatically handling common customer inquiries. The goal of the solution is to minimize escalations to human intervention and phone calls while maintaining a personalized interaction. To design the solution, the Generative AI Engineer needs to define the input data to the LLM and the task it should perform.

Which input/output pair will support their goal?

A.

Input: Online chat logs; Output: Group the chat logs by users, followed by summarizing each user’s interactions

B.

Input: Online chat logs; Output: Buttons that represent choices for booking details

C.

Input: Customer reviews; Output: Classify review sentiment

D.

Input: Online chat logs; Output: Cancellation options

Full Access
Question # 17

A Generative AI Engineer is developing an LLM application that users can use to generate personalized birthday poems based on their names.

Which technique would be most effective in safeguarding the application, given the potential for malicious user inputs?

A.

Implement a safety filter that detects any harmful inputs and ask the LLM to respond that it is unable to assist

B.

Reduce the time that the users can interact with the LLM

C.

Ask the LLM to remind the user that the input is malicious but continue the conversation with the user

D.

Increase the amount of compute that powers the LLM to process input faster

Full Access
Question # 18

A Generative AI Engineer has created a RAG application which can help employees retrieve answers from an internal knowledge base, such as Confluence pages or Google Drive. The prototype application is now working with some positive feedback from internal company testers. Now the Generative Al Engineer wants to formally evaluate the system’s performance and understand where to focus their efforts to further improve the system.

How should the Generative AI Engineer evaluate the system?

A.

Use cosine similarity score to comprehensively evaluate the quality of the final generated answers.

B.

Curate a dataset that can test the retrieval and generation components of the system separately. Use MLflow’s built in evaluation metrics to perform the evaluation on the retrieval and generation components.

C.

Benchmark multiple LLMs with the same data and pick the best LLM for the job.

D.

Use an LLM-as-a-judge to evaluate the quality of the final answers generated.

Full Access