Month End Sale Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: buysanta

Exact2Pass Menu

AWS Certified Data Engineer - Associate (DEA-C01)

Last Update 5 hours ago Total Questions : 231

The AWS Certified Data Engineer - Associate (DEA-C01) content is now fully updated, with all current exam questions added 5 hours ago. Deciding to include Data-Engineer-Associate practice exam questions in your study plan goes far beyond basic test preparation.

You'll find that our Data-Engineer-Associate exam questions frequently feature detailed scenarios and practical problem-solving exercises that directly mirror industry challenges. Engaging with these Data-Engineer-Associate sample sets allows you to effectively manage your time and pace yourself, giving you the ability to finish any AWS Certified Data Engineer - Associate (DEA-C01) practice test comfortably within the allotted time.

Question # 4

A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.

The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.

Which solutions will meet these requirements? (Choose two.)

A.

Create an AWS Glue partition index. Enable partition filtering.

B.

Bucket the data based on a column that the data have in common in a WHERE clause of the user query

C.

Use Athena partition projection based on the S3 bucket prefix.

D.

Transform the data that is in the S3 bucket to Apache Parquet format.

E.

Use the Amazon EMR S3DistCP utility to combine smaller objects in the S3 bucket into larger objects.

Question # 5

A data engineering team is using an Amazon Redshift data warehouse for operational reporting. The team wants to prevent performance issues that might result from long- running queries. A data engineer must choose a system table in Amazon Redshift to record anomalies when a query optimizer identifies conditions that might indicate performance issues.

Which table views should the data engineer use to meet this requirement?

A.

STL USAGE CONTROL

B.

STL ALERT EVENT LOG

C.

STL QUERY METRICS

D.

STL PLAN INFO

Question # 6

A company is developing machine learning (ML) models. A data engineer needs to apply data quality rules to training data. The company stores the training data in an Amazon S3 bucket.

A.

Create an AWS Lambda function to check data quality and to raise exceptions in the code.

B.

Create an AWS Glue DataBrew project for the data in the S3 bucket. Create a ruleset for the data quality rules. Create a profile job to run the data quality rules. Use Amazon EventBridge to run the profile job when data is added to the S3 bucket.

C.

Create an Amazon EMR provisioned cluster. Add a Python data quality package.

D.

Create AWS Lambda functions to evaluate data quality rules and orchestrate with AWS Step Functions.

Question # 7

A data engineer is building a new data pipeline that stores metadata in an Amazon DynamoDB table. The data engineer must ensure that all items that are older than a specified age are removed from the DynamoDB table daily.

Which solution will meet this requirement with the LEAST configuration effort?

A.

Enable DynamoDB TTL on the DynamoDB table. Adjust the application source code to set the TTL attribute appropriately.

B.

Create an Amazon EventBridge rule that uses a daily cron expression to trigger an AWS Lambda function to delete items that are older than the specified age.

C.

Add a lifecycle configuration to the DynamoDB table that deletes items that are older than the specified age.

D.

Create a DynamoDB stream that has an AWS Lambda function that reacts to data modifications. Configure the Lambda function to delete items that are older than the specified age.

Question # 8

A financial services company stores financial data in Amazon Redshift. A data engineer wants to run real-time queries on the financial data to support a web-based trading application. The data engineer wants to run the queries from within the trading application.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Establish WebSocket connections to Amazon Redshift.

B.

Use the Amazon Redshift Data API.

C.

Set up Java Database Connectivity (JDBC) connections to Amazon Redshift.

D.

Store frequently accessed data in Amazon S3. Use Amazon S3 Select to run the queries.

Question # 9

Two developers are working on separate application releases. The developers have created feature branches named Branch A and Branch B by using a GitHub repository's master branch as the source.

The developer for Branch A deployed code to the production system. The code for Branch B will merge into a master branch in the following week's scheduled application release.

Which command should the developer for Branch B run before the developer raises a pull request to the master branch?

A.

git diff branchB mastergit commit -m

B.

git pull master

C.

git rebase master

D.

git fetch -b master

Question # 10

A data engineer configured an AWS Glue Data Catalog for data that is stored in Amazon S3 buckets. The data engineer needs to configure the Data Catalog to receive incremental updates.

The data engineer sets up event notifications for the S3 bucket and creates an Amazon Simple Queue Service (Amazon SQS) queue to receive the S3 events.

Which combination of steps should the data engineer take to meet these requirements with LEAST operational overhead? (Select TWO.)

A.

Create an S3 event-based AWS Glue crawler to consume events from the SQS queue.

B.

Define a time-based schedule to run the AWS Glue crawler, and perform incremental updates to the Data Catalog.

C.

Use an AWS Lambda function to directly update the Data Catalog based on S3 events that the SQS queue receives.

D.

Manually initiate the AWS Glue crawler to perform updates to the Data Catalog when there is a change in the S3 bucket.

E.

Use AWS Step Functions to orchestrate the process of updating the Data Catalog based on 53 events that the SQS queue receives.

Go to page: