New Year Sale Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: buysanta

Exact2Pass Menu

AWS Certified Data Engineer - Associate (DEA-C01)

Last Update 2 hours ago Total Questions : 218

The AWS Certified Data Engineer - Associate (DEA-C01) content is now fully updated, with all current exam questions added 2 hours ago. Deciding to include Data-Engineer-Associate practice exam questions in your study plan goes far beyond basic test preparation.

You'll find that our Data-Engineer-Associate exam questions frequently feature detailed scenarios and practical problem-solving exercises that directly mirror industry challenges. Engaging with these Data-Engineer-Associate sample sets allows you to effectively manage your time and pace yourself, giving you the ability to finish any AWS Certified Data Engineer - Associate (DEA-C01) practice test comfortably within the allotted time.

Question # 4

A data engineer is using AWS Glue to build an extract, transform, and load (ETL) pipeline that processes streaming data from sensors. The pipeline sends the data to an Amazon S3 bucket in near real-time. The data engineer also needs to perform transformations and join the incoming data with metadata that is stored in an Amazon RDS for PostgreSQL database. The data engineer must write the results back to a second S3 bucket in Apache Parquet format.

Which solution will meet these requirements?

A.

Use an AWS Glue streaming job and AWS Glue Studio to perform the transformations and to write the data in Parquet format.

B.

Use AWS Glue jobs and AWS Glue Data Catalog to catalog the data from Amazon S3 and Amazon RDS. Configure the jobs to perform the transformations and joins and to write the output in Parquet format.

C.

Use an AWS Glue interactive session to process the streaming data and to join the data with the RDS database.

D.

Use an AWS Glue Python shell job to run a Python script that processes the data in batches. Keep track of processed files by using AWS Glue bookmarks.

Question # 5

A company uses AWS Key Management Service (AWS KMS) to encrypt an Amazon Redshift cluster. The company wants to configure a cross-Region snapshot of the Redshift cluster as part of disaster recovery (DR) strategy.

A data engineer needs to use the AWS CLI to create the cross-Region snapshot.

Which combination of steps will meet these requirements? (Select TWO.)

A.

Create a KMS key and configure a snapshot copy grant in the source AWS Region.

B.

In the source AWS Region, enable snapshot copying. Specify the name of the snapshot copy grant that is created in the destination AWS Region.

C.

In the source AWS Region, enable snapshot copying. Specify the name of the snapshot copy grant that is created in the source AWS Region.

D.

Create a KMS key and configure a snapshot copy grant in the destination AWS Region.

E.

Convert the cluster to a Multi-AZ deployment.

Question # 6

A company uses Amazon Redshift for its data warehouse. The company must automate refresh schedules for Amazon Redshift materialized views.

Which solution will meet this requirement with the LEAST effort?

A.

Use Apache Airflow to refresh the materialized views.

B.

Use an AWS Lambda user-defined function (UDF) within Amazon Redshift to refresh the materialized views.

C.

Use the query editor v2 in Amazon Redshift to refresh the materialized views.

D.

Use an AWS Glue workflow to refresh the materialized views.

Question # 7

A company ingests data from multiple data sources and stores the data in an Amazon S3 bucket. An AWS Glue extract, transform, and load (ETL) job transforms the data and writes the transformed data to an Amazon S3 based data lake. The company uses Amazon Athena to query the data that is in the data lake.

The company needs to identify matching records even when the records do not have a common unique identifier.

Which solution will meet this requirement?

A.

Use Amazon Made pattern matching as part of the ETL job.

B.

Train and use the AWS Glue PySpark Filter class in the ETL job.

C.

Partition tables and use the ETL job to partition the data on a unique identifier.

D.

Train and use the AWS Lake Formation FindMatches transform in the ETL job.

Question # 8

A company needs to implement a new inventory management system that provides near real-time updates and visibility across all AWS Regions. The new solution must provide centralized access control over data access and permissions. The company has a separate inventory management team assigned to each Region. Each inventory management team needs to update inventory levels.

A data engineer must implement Amazon Redshift data sharing with write capabilities. The solution must follow the principle of least privilege.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Configure a single Redshift datashare from the company's headquarters that provides read-only access for all Regions. Configure a separate AWS Glue ETL job to update data for each Region.

B.

Configure three Regional Redshift datashares that provide full write access. Allow full self-managed access controls.

C.

Configure a single Redshift datashare from the company's headquarters that has selective write permissions for inventory. Set up Regional namespace controls.

D.

Configure separate Redshift datashares for multiple table types that provide full write access. Distribute the datashares across all Regional clusters. Allow self-managed Regional schema permissions.

Question # 9

A data engineer is designing a new data lake architecture for a company. The data engineer plans to use Apache Iceberg tables and AWS Glue Data Catalog to achieve fast query performance and enhanced metadata handling. The data engineer needs to query historical data for trend analysis and optimize storage costs for a large volume of event data.

Which solution will meet these requirements with the LEAST development effort?

A.

Store Iceberg table data files in Amazon S3 Intelligent-Tiering.

B.

Define partitioning schemes based on event type and event date.

C.

Use AWS Glue Data Catalog to automatically optimize Iceberg storage.

D.

Run a custom AWS Glue job to compact Iceberg table data files.

Question # 10

A company needs to automate data workflows from multiple data sources to run both on schedules and in response to events from Amazon EventBridge. The data sources are Amazon RDS and Amazon S3. The company needs a single data pipeline that can be invoked both by scheduled events and near real-time EventBridge events.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create an AWS Glue workflow. Use EventBridge to integrate the events and schedules.

B.

Create an Amazon Managed Workflow for Apache Airflow (Amazon MWAA) workflow that uses a directed acyclic graph (DAG). Use EventBridge to integrate the events and schedules.

C.

Create an AWS Step Functions state machine. Integrate the state machine with AWS Glue ETL jobs and EventBridge to orchestrate the pipeline based on events and schedules.

D.

Create Amazon EMR Serverless jobs that are invoked by AWS Lambda functions. Use EventBridge events and schedules to orchestrate the EMR jobs.

Go to page: