Last Update 1 week ago Total Questions : 187
The AWS Certified Data Engineer - Associate (DEA-C01) content is now fully updated, with all current exam questions added 1 week ago. Deciding to include Data-Engineer-Associate practice exam questions in your study plan goes far beyond basic test preparation.
You'll find that our Data-Engineer-Associate exam questions frequently feature detailed scenarios and practical problem-solving exercises that directly mirror industry challenges. Engaging with these Data-Engineer-Associate sample sets allows you to effectively manage your time and pace yourself, giving you the ability to finish any AWS Certified Data Engineer - Associate (DEA-C01) practice test comfortably within the allotted time.
A company uses a variety of AWS and third-party data stores. The company wants to consolidate all the data into a central data warehouse to perform analytics. Users need fast response times for analytics queries.
The company uses Amazon QuickSight in direct query mode to visualize the data. Users normally run queries during a few hours each day with unpredictable spikes.
Which solution will meet these requirements with the LEAST operational overhead?
A company is building a data lake for a new analytics team. The company is using Amazon S3 for storage and Amazon Athena for query analysis. All data that is in Amazon S3 is in Apache Parquet format.
The company is running a new Oracle database as a source system in the company's data center. The company has 70 tables in the Oracle database. All the tables have primary keys. Data can occasionally change in the source system. The company wants to ingest the tables every day into the data lake.
Which solution will meet this requirement with the LEAST effort?
A company is using Amazon S3 to build a data lake. The company needs to replicate records from multiple source databases into Apache Parquet format.
Most of the source databases are hosted on Amazon RDS. However, one source database is an on-premises Microsoft SQL Server Enterprise instance. The company needs to implement a solution to replicate existing data from all source databases and all future changes to the target S3 data lake.
Which solution will meet these requirements MOST cost-effectively?
A company stores CSV files in an Amazon S3 bucket. A data engineer needs to process the data in the CSV files and store the processed data in a new S3 bucket.
The process needs to rename a column, remove specific columns, ignore the second row of each file, create a new column based on the values of the first row of the data, and filter the results by a numeric value of a column.
Which solution will meet these requirements with the LEAST development effort?
During a security review, a company identified a vulnerability in an AWS Glue job. The company discovered that credentials to access an Amazon Redshift cluster were hard coded in the job script.
A data engineer must remediate the security vulnerability in the AWS Glue job. The solution must securely store the credentials.
Which combination of steps should the data engineer take to meet these requirements? (Choose two.)
A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.
The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.
Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)
A company stores datasets in JSON format and .csv format in an Amazon S3 bucket. The company has Amazon RDS for Microsoft SQL Server databases, Amazon DynamoDB tables that are in provisioned capacity mode, and an Amazon Redshift cluster. A data engineering team must develop a solution that will give data scientists the ability to query all data sources by using syntax similar to SQL.
Which solution will meet these requirements with the LEAST operational overhead?