Summer Sale Special 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ex2p65

Exact2Pass Menu

Question # 4

A company is using domain-specific models. The company wants to avoid creating new models from the beginning. The company instead wants to adapt pre-trained models to create models for new, related tasks.

Which ML strategy meets these requirements?

A.

Increase the number of epochs.

B.

Use transfer learning.

C.

Decrease the number of epochs.

D.

Use unsupervised learning.

Full Access
Question # 5

A company wants to create a chatbot by using a foundation model (FM) on Amazon Bedrock. The FM needs to access encrypted data that is stored in an Amazon S3 bucket.

The data is encrypted with Amazon S3 managed keys (SSE-S3).

The FM encounters a failure when attempting to access the S3 bucket data.

Which solution will meet these requirements?

A.

Ensure that the role that Amazon Bedrock assumes has permission to decrypt data with the correct encryption key.

B.

Set the access permissions for the S3 buckets to allow public access to enable access over the internet.

C.

Use prompt engineering techniques to tell the model to look for information in Amazon S3.

D.

Ensure that the S3 data does not contain sensitive information.

Full Access
Question # 6

Which functionality does Amazon SageMaker Clarify provide?

A.

Integrates a Retrieval Augmented Generation (RAG) workflow

B.

Monitors the quality of ML models in production

C.

Documents critical details about ML models

D.

Identifies potential bias during data preparation

Full Access
Question # 7

A company is using few-shot prompting on a base model that is hosted on Amazon Bedrock. The model currently uses 10 examples in the prompt. The model is invoked once daily and is performing well. The company wants to lower the monthly cost.

Which solution will meet these requirements?

A.

Customize the model by using fine-tuning.

B.

Decrease the number of tokens in the prompt.

C.

Increase the number of tokens in the prompt.

D.

Use Provisioned Throughput.

Full Access
Question # 8

Which option describes embeddings in the context of AI?

A.

A method for compressing large datasets

B.

An encryption method for securing sensitive data

C.

A method for visualizing high-dimensional data

D.

A numerical method for data representation in a reduced dimensionality space

Full Access
Question # 9

A company needs to use Amazon SageMaker AI for model training and inference. The company must comply with regulatory requirements to run SageMaker jobs in an isolated environment without internet access.

Which solution will meet these requirements?

A.

Run SageMaker training and inference by using SageMaker Experiments.

B.

Run SageMaker training and inference by using network isolation.

C.

Encrypt the data at rest by using encryption for SageMaker geospatial capabilities.

D.

Associate appropriate AWS Identity and Access Management (IAM) roles with the SageMaker jobs.

Full Access
Question # 10

A company has documents that are missing some words because of a database error. The company wants to build an ML model that can suggest potential words to fill in the missing text.

Which type of model meets this requirement?

A.

Topic modeling

B.

Clustering models

C.

Prescriptive ML models

D.

BERT-based models

Full Access
Question # 11

A medical company deployed a disease detection model on Amazon Bedrock. To comply with privacy policies, the company wants to prevent the model from including personal patient information in its responses. The company also wants to receive notification when policy violations occur.

Which solution meets these requirements?

A.

Use Amazon Macie to scan the model's output for sensitive data and set up alerts for potential violations.

B.

Configure AWS CloudTrail to monitor the model's responses and create alerts for any detected personal information.

C.

Use Guardrails for Amazon Bedrock to filter content. Set up Amazon CloudWatch alarms for notification of policy violations.

D.

Implement Amazon SageMaker Model Monitor to detect data drift and receive alerts when model quality degrades.

Full Access
Question # 12

Which scenario represents a practical use case for generative AI?

A.

Using an ML model to forecast product demand

B.

Employing a chatbot to provide human-like responses to customer queries in real time

C.

Using an analytics dashboard to track website traffic and user behavior

D.

Implementing a rule-based recommendation engine to suggest products to customers

Full Access
Question # 13

A company wants to build a lead prioritization application for its employees to contact potential customers. The application must give employees the ability to view and adjust the weights assigned to different variables in the model based on domain knowledge and expertise.

Which ML model type meets these requirements?

A.

Logistic regression model

B.

Deep learning model built on principal components

C.

K-nearest neighbors (k-NN) model

D.

Neural network

Full Access
Question # 14

A company is using a pre-trained large language model (LLM) to build a chatbot for product recommendations. The company needs the LLM outputs to be short and written in a specific language.

Which solution will align the LLM response quality with the company's expectations?

A.

Adjust the prompt.

B.

Choose an LLM of a different size.

C.

Increase the temperature.

D.

Increase the Top K value.

Full Access
Question # 15

An AI practitioner is using a large language model (LLM) to create content for marketing campaigns. The generated content sounds plausible and factual but is incorrect.

Which problem is the LLM having?

A.

Data leakage

B.

Hallucination

C.

Overfitting

D.

Underfitting

Full Access
Question # 16

A company is developing an ML model to predict customer churn.

Which evaluation metric will assess the model's performance on a binary classification task such as predicting chum?

A.

F1 score

B.

Mean squared error (MSE)

C.

R-squared

D.

Time used to train the model

Full Access
Question # 17

A company has terabytes of data in a database that the company can use for business analysis. The company wants to build an AI-based application that can build a SQL query from input text that employees provide. The employees have minimal experience with technology.

Which solution meets these requirements?

A.

Generative pre-trained transformers (GPT)

B.

Residual neural network

C.

Support vector machine

D.

WaveNet

Full Access
Question # 18

Which technique involves training AI models on labeled datasets to adapt the models to specific industry terminology and requirements?

A.

Data augmentation

B.

Fine-tuning

C.

Model quantization

D.

Continuous pre-training

Full Access
Question # 19

A company wants to use a large language model (LLM) to develop a conversational agent. The company needs to prevent the LLM from being manipulated with common prompt engineering techniques to perform undesirable actions or expose sensitive information.

Which action will reduce these risks?

A.

Create a prompt template that teaches the LLM to detect attack patterns.

B.

Increase the temperature parameter on invocation requests to the LLM.

C.

Avoid using LLMs that are not listed in Amazon SageMaker.

D.

Decrease the number of input tokens on invocations of the LLM.

Full Access
Question # 20

An AI practitioner needs to improve the accuracy of a natural language generation model. The model uses rapidly changing inventory data.

Which technique will improve the model's accuracy?

A.

Transfer learning

B.

Federated learning

C.

Retrieval Augmented Generation (RAG)

D.

One-shot prompting

Full Access
Question # 21

A company is using a large language model (LLM) on Amazon Bedrock to build a chatbot. The chatbot processes customer support requests. To resolve a request, the customer and the chatbot must interact a few times.

Which solution gives the LLM the ability to use content from previous customer messages?

A.

Turn on model invocation logging to collect messages.

B.

Add messages to the model prompt.

C.

Use Amazon Personalize to save conversation history.

D.

Use Provisioned Throughput for the LLM.

Full Access
Question # 22

An AI practitioner has built a deep learning model to classify the types of materials in images. The AI practitioner now wants to measure the model performance.

Which metric will help the AI practitioner evaluate the performance of the model?

A.

Confusion matrix

B.

Correlation matrix

C.

R2 score

D.

Mean squared error (MSE)

Full Access
Question # 23

A company is using an Amazon Bedrock base model to summarize documents for an internal use case. The company trained a custom model to improve the summarization quality.

Which action must the company take to use the custom model through Amazon Bedrock?

A.

Purchase Provisioned Throughput for the custom model.

B.

Deploy the custom model in an Amazon SageMaker endpoint for real-time inference.

C.

Register the model with the Amazon SageMaker Model Registry.

D.

Grant access to the custom model in Amazon Bedrock.

Full Access
Question # 24

A company is developing a new model to predict the prices of specific items. The model performed well on the training dataset. When the company deployed the model to production, the model's performance decreased significantly.

What should the company do to mitigate this problem?

A.

Reduce the volume of data that is used in training.

B.

Add hyperparameters to the model.

C.

Increase the volume of data that is used in training.

D.

Increase the model training time.

Full Access
Question # 25

A company is building a customer service chatbot. The company wants the chatbot to improve its responses by learning from past interactions and online resources.

Which AI learning strategy provides this self-improvement capability?

A.

Supervised learning with a manually curated dataset of good responses and bad responses

B.

Reinforcement learning with rewards for positive customer feedback

C.

Unsupervised learning to find clusters of similar customer inquiries

D.

Supervised learning with a continuously updated FAQ database

Full Access
Question # 26

A company wants to collaborate with several research institutes to develop an AI model. The company needs standardized documentation of model version tracking and a record of model development.

Which solution meets these requirements?

A.

Track the model changes by using Git.

B.

Track the model changes by using Amazon Fraud Detector.

C.

Track the model changes by using Amazon SageMaker Model Cards.

D.

Track the model changes by using Amazon Comprehend.

Full Access
Question # 27

A company wants to build an ML model by using Amazon SageMaker. The company needs to share and manage variables for model development across multiple teams.

Which SageMaker feature meets these requirements?

A.

Amazon SageMaker Feature Store

B.

Amazon SageMaker Data Wrangler

C.

Amazon SageMaker Clarify

D.

Amazon SageMaker Model Cards

Full Access
Question # 28

A company is building an ML model to analyze archived data. The company must perform inference on large datasets that are multiple GBs in size. The company does not need to access the model predictions immediately.

Which Amazon SageMaker inference option will meet these requirements?

A.

Batch transform

B.

Real-time inference

C.

Serverless inference

D.

Asynchronous inference

Full Access
Question # 29

A company wants to make a chatbot to help customers. The chatbot will help solve technical problems without human intervention. The company chose a foundation model (FM) for the chatbot. The chatbot needs to produce responses that adhere to company tone.

Which solution meets these requirements?

A.

Set a low limit on the number of tokens the FM can produce.

B.

Use batch inferencing to process detailed responses.

C.

Experiment and refine the prompt until the FM produces the desired responses.

D.

Define a higher number for the temperature parameter.

Full Access
Question # 30

A financial institution is using Amazon Bedrock to develop an AI application. The application is hosted in a VPC. To meet regulatory compliance standards, the VPC is not allowed access to any internet traffic.

Which AWS service or feature will meet these requirements?

A.

AWS PrivateLink

B.

Amazon Macie

C.

Amazon CloudFront

D.

Internet gateway

Full Access
Question # 31

A company deployed a model to production. After 4 months, the model inference quality degraded. The company wants to receive a notification if the model inference quality degrades. The company also wants to ensure that the problem does not happen again.

Which solution will meet these requirements?

A.

Retrain the model. Monitor model drift by using Amazon SageMaker Clarify.

B.

Retrain the model. Monitor model drift by using Amazon SageMaker Model Monitor.

C.

Build a new model. Monitor model drift by using Amazon SageMaker Feature Store.

D.

Build a new model. Monitor model drift by using Amazon SageMaker JumpStart.

Full Access
Question # 32

Which term describes the numerical representations of real-world objects and concepts that AI and natural language processing (NLP) models use to improve understanding of textual information?

A.

Embeddings

B.

Tokens

C.

Models

D.

Binaries

Full Access
Question # 33

A medical company wants to develop an AI application that can access structured patient records, extract relevant information, and generate concise summaries.

Which solution will meet these requirements?

A.

Use Amazon Comprehend Medical to extract relevant medical entities and relationships. Apply rule-based logic to structure and format summaries.

B.

Use Amazon Personalize to analyze patient engagement patterns. Integrate the output with a general purpose text summarization tool.

C.

Use Amazon Textract to convert scanned documents into digital text. Design a keyword extraction system to generate summaries.

D.

Implement Amazon Kendra to provide a searchable index for medical records. Use a template-based system to format summaries.

Full Access
Question # 34

Which metric measures the runtime efficiency of operating AI models?

A.

Customer satisfaction score (CSAT)

B.

Training time for each epoch

C.

Average response time

D.

Number of training instances

Full Access
Question # 35

Which component of Amazon Bedrock Studio can help secure the content that AI systems generate?

A.

Access controls

B.

Function calling

C.

Guardrails

D.

Knowledge bases

Full Access
Question # 36

A company wants to build an ML application.

Select and order the correct steps from the following list to develop a well-architected ML workload. Each step should be selected one time. (Select and order FOUR.)

• Deploy model

• Develop model

• Monitor model

• Define business goal and frame ML problem

Full Access
Question # 37

Which feature of Amazon OpenSearch Service gives companies the ability to build vector database applications?

A.

Integration with Amazon S3 for object storage

B.

Support for geospatial indexing and queries

C.

Scalable index management and nearest neighbor search capability

D.

Ability to perform real-time analysis on streaming data

Full Access
Question # 38

A company is using Amazon SageMaker to develop AI models.

Select the correct SageMaker feature or resource from the following list for each step in the AI model lifecycle workflow. Each

SageMaker feature or resource should be selected one time or not at all. (Select TWO.)

    SageMaker Clarify

    SageMaker Model Registry

    SageMaker Serverless Inference

Full Access
Question # 39

A manufacturing company wants to create product descriptions in multiple languages.

Which AWS service will automate this task?

A.

Amazon Translate

B.

Amazon Transcribe

C.

Amazon Kendra

D.

Amazon Polly

Full Access
Question # 40

A company wants to develop ML applications to improve business operations and efficiency.

Select the correct ML paradigm from the following list for each use case. Each ML paradigm should be selected one or more times. (Select FOUR.)

• Supervised learning

• Unsupervised learning

Full Access
Question # 41

A company wants to develop an educational game where users answer questions such as the following: "A jar contains six red, four green, and three yellow marbles. What is the probability of choosing a green marble from the jar?"

Which solution meets these requirements with the LEAST operational overhead?

A.

Use supervised learning to create a regression model that will predict probability.

B.

Use reinforcement learning to train a model to return the probability.

C.

Use code that will calculate probability by using simple rules and computations.

D.

Use unsupervised learning to create a model that will estimate probability density.

Full Access
Question # 42

A company wants to create an application by using Amazon Bedrock. The company has a limited budget and prefers flexibility without long-term commitment.

Which Amazon Bedrock pricing model meets these requirements?

A.

On-Demand

B.

Model customization

C.

Provisioned Throughput

D.

Spot Instance

Full Access
Question # 43

A company wants to create an application to summarize meetings by using meeting audio recordings.

Select and order the correct steps from the following list to create the application. Each step should be selected one time or not at all. (Select and order THREE.)

• Convert meeting audio recordings to meeting text files by using Amazon Polly.

• Convert meeting audio recordings to meeting text files by using Amazon Transcribe.

• Store meeting audio recordings in an Amazon S3 bucket.

• Store meeting audio recordings in an Amazon Elastic Block Store (Amazon EBS) volume.

• Summarize meeting text files by using Amazon Bedrock.

• Summarize meeting text files by using Amazon Lex.

Full Access
Question # 44

A customer service team is developing an application to analyze customer feedback and automatically classify the feedback into different categories. The categories include product quality, customer service, and delivery experience.

Which AI concept does this scenario present?

A.

Computer vision

B.

Natural language processing (NLP)

C.

Recommendation systems

D.

Fraud detection

Full Access
Question # 45

A company has built a solution by using generative AI. The solution uses large language models (LLMs) to translate training manuals from English into other languages. The company wants to evaluate the accuracy of the solution by examining the text generated for the manuals.

Which model evaluation strategy meets these requirements?

A.

Bilingual Evaluation Understudy (BLEU)

B.

Root mean squared error (RMSE)

C.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

D.

F1 score

Full Access