Summer Sale Special 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ex2p65

Exact2Pass Menu

Question # 4

A data scientist is working on a public sector project for an urban traffic system. While studying the traffic patterns, it is clear to the data scientist that the traffic behavior at each light is correlated, subject to a small stochastic error term. The data scientist must model the traffic behavior to analyze the traffic patterns and reduce congestion.

How will the data scientist MOST effectively model the problem?

A.

The data scientist should obtain a correlated equilibrium policy by formulating this problem as a multi-agent reinforcement learning problem.

B.

The data scientist should obtain the optimal equilibrium policy by formulating this problem as a single-agent reinforcement learning problem.

C.

Rather than finding an equilibrium policy, the data scientist should obtain accurate predictors of traffic flow by using historical data through a supervised learning approach.

D.

Rather than finding an equilibrium policy, the data scientist should obtain accurate predictors of traffic flow by using unlabeled simulated data representing the new traffic patterns in the city and applying an unsupervised learning approach.

Full Access
Question # 5

A machine learning (ML) engineer is preparing a dataset for a classification model. The ML engineer notices that some continuous numeric features have a significantly greater value than most other features. A business expert explains that the features are independently informative and that the dataset is representative of the target distribution.

After training, the model's inferences accuracy is lower than expected.

Which preprocessing technique will result in the GREATEST increase of the model's inference accuracy?

A.

Normalize the problematic features.

B.

Bootstrap the problematic features.

C.

Remove the problematic features.

D.

Extrapolate synthetic features.

Full Access
Question # 6

A Data Science team within a large company uses Amazon SageMaker notebooks to access data stored in Amazon S3 buckets. The IT Security team is concerned that internet-enabled notebook instances create a security vulnerability where malicious code running on the instances could compromise data privacy. The company mandates that all instances stay within a secured VPC with no internet access, and data communication traffic must stay within the AWS network.

How should the Data Science team configure the notebook instance placement to meet these requirements?

A.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Place the Amazon SageMaker endpoint and S3 buckets within the same VPC.

B.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Use 1AM policies to grant access to Amazon S3 and Amazon SageMaker.

C.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Ensure the VPC has S3 VPC endpoints and Amazon SageMaker VPC endpoints attached to it.

D.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Ensure the VPC has a NAT gateway and an associated security group allowing only outbound connections to Amazon S3 and Amazon SageMaker

Full Access
Question # 7

A data scientist receives a collection of insurance claim records. Each record includes a claim ID. the final outcome of the insurance claim, and the date of the final outcome.

The final outcome of each claim is a selection from among 200 outcome categories. Some claim records include only partial information. However, incomplete claim records include only 3 or 4 outcome ...gones from among the 200 available outcome categories. The collection includes hundreds of records for each outcome category. The records are from the previous 3 years.

The data scientist must create a solution to predict the number of claims that will be in each outcome category every month, several months in advance.

Which solution will meet these requirements?

A.

Perform classification every month by using supervised learning of the 20X3 outcome categories based on claim contents.

B.

Perform reinforcement learning by using claim IDs and dates Instruct the insurance agents who submit the claim records to estimate the expected number of claims in each outcome category every month

C.

Perform forecasting by using claim IDs and dates to identify the expected number ot claims in each outcome category every month.

D.

Perform classification by using supervised learning of the outcome categories for which partial information on claim contents is provided. Perform forecasting by using claim IDs and dates for all other outcome categories.

Full Access
Question # 8

An employee found a video clip with audio on a company's social media feed. The language used in the video is Spanish. English is the employee's first language, and they do not understand Spanish. The employee wants to do a sentiment analysis.

What combination of services is the MOST efficient to accomplish the task?

A.

Amazon Transcribe, Amazon Translate, and Amazon Comprehend

B.

Amazon Transcribe, Amazon Comprehend, and Amazon SageMaker seq2seq

C.

Amazon Transcribe, Amazon Translate, and Amazon SageMaker Neural Topic Model (NTM)

D.

Amazon Transcribe, Amazon Translate, and Amazon SageMaker BlazingText

Full Access
Question # 9

An online delivery company wants to choose the fastest courier for each delivery at the moment an order is placed. The company wants to implement this feature for existing users and new users of its application. Data scientists have trained separate models with XGBoost for this purpose, and the models are stored in Amazon S3. There is one model fof each city where the company operates.

The engineers are hosting these models in Amazon EC2 for responding to the web client requests, with one instance for each model, but the instances have only a 5% utilization in CPU and memory, ....operation engineers want to avoid managing unnecessary resources.

Which solution will enable the company to achieve its goal with the LEAST operational overhead?

A.

Create an Amazon SageMaker notebook instance for pulling all the models from Amazon S3 using the boto3 library. Remove the existing instances and use the notebook to perform a SageMaker batch transform for performing inferences offline for all the possible users in all the cities. Store the results in different files in Amazon S3. Point the web client to the files.

B.

Prepare an Amazon SageMaker Docker container based on the open-source multi-model server. Remove the existing instances and create a multi-model endpoint in SageMaker instead, pointing to the S3 bucket containing all the models Invoke the endpoint from the web client at runtime, specifying the TargetModel parameter according to the city of each request.

C.

Keep only a single EC2 instance for hosting all the models. Install a model server in the instance and load each model by pulling it from Amazon S3. Integrate the instance with the web client using Amazon API Gateway for responding to the requests in real time, specifying the target resource according to the city of each request.

D.

Prepare a Docker container based on the prebuilt images in Amazon SageMaker. Replace the existing instances with separate SageMaker endpoints. one for each city where the company operates. Invoke the endpoints from the web client, specifying the URL and EndpomtName parameter according to the city of each request.

Full Access
Question # 10

A manufacturing company stores production volume data in a PostgreSQL database.

The company needs an end-to-end solution that will give business analysts the ability to prepare data for processing and to predict future production volume based the previous year's production volume. The solution must not require the company to have coding knowledge.

Which solution will meet these requirements with the LEAST effort?

A.

Use AWS Database Migration Service (AWS DMS) to transfer the data from the PostgreSQL database to an Amazon S3 bucket. Create an Amazon EMR cluster to read the S3 bucket and perform the data preparation. Use Amazon SageMaker Studio for the prediction modeling.

B.

Use AWS Glue DataBrew to read the data that is in the PostgreSQL database and to perform the data preparation. Use Amazon SageMaker Canvas for the prediction modeling.

C.

Use AWS Database Migration Service (AWS DMS) to transfer the data from the PostgreSQL database to an Amazon S3 bucket. Use AWS Glue to read the data in the S3 bucket and to perform the data preparation. Use Amazon SageMaker Canvas for the prediction modeling.

D.

Use AWS Glue DataBrew to read the data that is in the PostgreSQL database and to perform the data preparation. Use Amazon SageMaker Studio for the prediction modeling.

Full Access
Question # 11

A Machine Learning Specialist is working with a media company to perform classification on popular articles from the company's website. The company is using random forests to classify how popular an article will be before it is published A sample of the data being used is below.

Given the dataset, the Specialist wants to convert the Day-Of_Week column to binary values.

What technique should be used to convert this column to binary values.

A.

Binarization

B.

One-hot encoding

C.

Tokenization

D.

Normalization transformation

Full Access
Question # 12

A company operates an amusement park. The company wants to collect, monitor, and store real-time traffic data at several park entrances by using strategically placed cameras. The company's security team must be able to immediately access the data for viewing. Stored data must be indexed and must be accessible to the company's data science team.

Which solution will meet these requirements MOST cost-effectively?

A.

Use Amazon Kinesis Video Streams to ingest, index, and store the data. Use the built-in integration with Amazon Rekognition for viewing by the security team.

B.

Use Amazon Kinesis Video Streams to ingest, index, and store the data. Use the built-in HTTP live streaming (HLS) capability for viewing by the security team.

C.

Use Amazon Rekognition Video and the GStreamer plugin to ingest the data for viewing by the security team. Use Amazon Kinesis Data Streams to index and store the data.

D.

Use Amazon Data Firehose to ingest, index, and store the data. Use the built-in HTTP live streaming (HLS) capability for viewing by the security team.

Full Access
Question # 13

A company is running an Amazon SageMaker training job that will access data stored in its Amazon S3 bucket A compliance policy requires that the data never be transmitted across the internet How should the company set up the job?

A.

Launch the notebook instances in a public subnet and access the data through the public S3 endpoint

B.

Launch the notebook instances in a private subnet and access the data through a NAT gateway

C.

Launch the notebook instances in a public subnet and access the data through a NAT gateway

D.

Launch the notebook instances in a private subnet and access the data through an S3 VPC endpoint.

Full Access
Question # 14

A machine learning (ML) specialist wants to create a data preparation job that uses a PySpark script with complex window aggregation operations to create data for training and testing. The ML specialist needs to evaluate the impact of the number of features and the sample count on model performance.

Which approach should the ML specialist use to determine the ideal data transformations for the model?

A.

Add an Amazon SageMaker Debugger hook to the script to capture key metrics. Run the script as an AWS Glue job.

B.

Add an Amazon SageMaker Experiments tracker to the script to capture key metrics. Run the script as an AWS Glue job.

C.

Add an Amazon SageMaker Debugger hook to the script to capture key parameters. Run the script as a SageMaker processing job.

D.

Add an Amazon SageMaker Experiments tracker to the script to capture key parameters. Run the script as a SageMaker processing job.

Full Access
Question # 15

A large JSON dataset for a project has been uploaded to a private Amazon S3 bucket The Machine Learning Specialist wants to securely access and explore the data from an Amazon SageMaker notebook instance A new VPC was created and assigned to the Specialist

How can the privacy and integrity of the data stored in Amazon S3 be maintained while granting access to the Specialist for analysis?

A.

Launch the SageMaker notebook instance within the VPC with SageMaker-provided internet access enabled Use an S3 ACL to open read privileges to the everyone group

B.

Launch the SageMaker notebook instance within the VPC and create an S3 VPC endpoint for the notebook to access the data Copy the JSON dataset from Amazon S3 into the ML storage volume on the SageMaker notebook instance and work against the local dataset

C.

Launch the SageMaker notebook instance within the VPC and create an S3 VPC endpoint for the notebook to access the data Define a custom S3 bucket policy to only allow requests from your VPC to access the S3 bucket

D.

Launch the SageMaker notebook instance within the VPC with SageMaker-provided internet access enabled. Generate an S3 pre-signed URL for access to data in the bucket

Full Access
Question # 16

A company wants to use automatic speech recognition (ASR) to transcribe messages that are less than 60 seconds long from a voicemail-style application. The company requires the correct identification of 200 unique product names, some of which have unique spellings or pronunciations.

The company has 4,000 words of Amazon SageMaker Ground Truth voicemail transcripts it can use to customize the chosen ASR model. The company needs to ensure that everyone can update their customizations multiple times each hour.

Which approach will maximize transcription accuracy during the development phase?

A.

Use a voice-driven Amazon Lex bot to perform the ASR customization. Create customer slots within the bot that specifically identify each of the required product names. Use the Amazon Lex synonym mechanism to provide additional variations of each product name as mis-transcriptions are identified in development.

B.

Use Amazon Transcribe to perform the ASR customization. Analyze the word confidence scores in the transcript, and automatically create or update a custom vocabulary file with any word that has a confidence score below an acceptable threshold value. Use this updated custom vocabulary file in all future transcription tasks.

C.

Create a custom vocabulary file containing each product name with phonetic pronunciations, and use it with Amazon Transcribe to perform the ASR customization. Analyze the transcripts and manually update the custom vocabulary file to include updated or additional entries for those names that are not being correctly identified.

D.

Use the audio transcripts to create a training dataset and build an Amazon Transcribe custom language model. Analyze the transcripts and update the training dataset with a manually corrected version of transcripts where product names are not being transcribed correctly. Create an updated custom language model.

Full Access
Question # 17

A data scientist stores financial datasets in Amazon S3. The data scientist uses Amazon Athena to query the datasets by using SQL.

The data scientist uses Amazon SageMaker to deploy a machine learning (ML) model. The data scientist wants to obtain inferences from the model at the SageMaker endpoint However, when the data …. ntist attempts to invoke the SageMaker endpoint, the data scientist receives SOL statement failures The data scientist's 1AM user is currently unable to invoke the SageMaker endpoint

Which combination of actions will give the data scientist's 1AM user the ability to invoke the SageMaker endpoint? (Select THREE.)

A.

Attach the AmazonAthenaFullAccess AWS managed policy to the user identity.

B.

Include a policy statement for the data scientist's 1AM user that allows the 1AM user to perform the sagemaker: lnvokeEndpoint action,

C.

Include an inline policy for the data scientist’s 1AM user that allows SageMaker to read S3 objects

D.

Include a policy statement for the data scientist's 1AM user that allows the 1AM user to perform the sagemakerGetRecord action.

E.

Include the SQL statement "USING EXTERNAL FUNCTION ml_function_name" in the Athena SQL query.

F.

Perform a user remapping in SageMaker to map the 1AM user to another 1AM user that is on the hosted endpoint.

Full Access
Question # 18

A machine learning (ML) specialist needs to extract embedding vectors from a text series. The goal is to provide a ready-to-ingest feature space for a data scientist to develop downstream ML predictive models. The text consists of curated sentences in English. Many sentences use similar words but in different contexts. There are questions and answers among the sentences, and the embedding space must differentiate between them.

Which options can produce the required embedding vectors that capture word context and sequential QA information? (Choose two.)

A.

Amazon SageMaker seq2seq algorithm

B.

Amazon SageMaker BlazingText algorithm in Skip-gram mode

C.

Amazon SageMaker Object2Vec algorithm

D.

Amazon SageMaker BlazingText algorithm in continuous bag-of-words (CBOW) mode

E.

Combination of the Amazon SageMaker BlazingText algorithm in Batch Skip-gram mode with a custom recurrent neural network (RNN)

Full Access
Question # 19

A company wants to enhance audits for its machine learning (ML) systems. The auditing system must be able to perform metadata analysis on the features that the ML models use. The audit solution must generate a report that analyzes the metadata. The solution also must be able to set the data sensitivity and authorship of features.

Which solution will meet these requirements with the LEAST development effort?

A.

Use Amazon SageMaker Feature Store to select the features. Create a data flow to perform feature-level metadata analysis. Create an Amazon DynamoDB table to store feature-level metadata. Use Amazon QuickSight to analyze the metadata.

B.

Use Amazon SageMaker Feature Store to set feature groups for the current features that the ML models use. Assign the required metadata for each feature. Use SageMaker Studio to analyze the metadata.

C.

Use Amazon SageMaker Features Store to apply custom algorithms to analyze the feature-level metadata that the company requires. Create an Amazon DynamoDB table to store feature-level metadata. Use Amazon QuickSight to analyze the metadata.

D.

Use Amazon SageMaker Feature Store to set feature groups for the current features that the ML models use. Assign the required metadata for each feature. Use Amazon QuickSight to analyze the metadata.

Full Access
Question # 20

Which of the following metrics should a Machine Learning Specialist generally use to compare/evaluate machine learning classification models against each other?

A.

Recall

B.

Misclassification rate

C.

Mean absolute percentage error (MAPE)

D.

Area Under the ROC Curve (AUC)

Full Access
Question # 21

A data engineer needs to provide a team of data scientists with the appropriate dataset to run machine learning training jobs. The data will be stored in Amazon S3. The data engineer is obtaining the data from an Amazon Redshift database and is using join queries to extract a single tabular dataset. A portion of the schema is as follows:

...traction Timestamp (Timeslamp)

...JName(Varchar)

...JNo (Varchar)

Th data engineer must provide the data so that any row with a CardNo value of NULL is removed. Also, the TransactionTimestamp column must be separated into a TransactionDate column and a isactionTime column Finally, the CardName column must be renamed to NameOnCard.

The data will be extracted on a monthly basis and will be loaded into an S3 bucket. The solution must minimize the effort that is needed to set up infrastructure for the ingestion and transformation. The solution must be automated and must minimize the load on the Amazon Redshift cluster

Which solution meets these requirements?

A.

Set up an Amazon EMR cluster Create an Apache Spark job to read the data from the Amazon Redshift cluster and transform the data. Load the data into the S3 bucket. Schedule the job to run monthly.

B.

Set up an Amazon EC2 instance with a SQL client tool, such as SQL Workbench/J. to query the data from the Amazon Redshift cluster directly. Export the resulting dataset into a We. Upload the file into the S3 bucket. Perform these tasks monthly.

C.

Set up an AWS Glue job that has the Amazon Redshift cluster as the source and the S3 bucket as the destination Use the built-in transforms Filter, Map. and RenameField to perform the required transformations. Schedule the job to run monthly.

D.

Use Amazon Redshift Spectrum to run a query that writes the data directly to the S3 bucket. Create an AWS Lambda function to run the query monthly

Full Access
Question # 22

This graph shows the training and validation loss against the epochs for a neural network

The network being trained is as follows

• Two dense layers one output neuron

• 100 neurons in each layer

• 100 epochs

• Random initialization of weights

Which technique can be used to improve model performance in terms of accuracy in the validation set?

A.

Early stopping

B.

Random initialization of weights with appropriate seed

C.

Increasing the number of epochs

D.

Adding another layer with the 100 neurons

Full Access
Question # 23

An ecommerce company wants to use machine learning (ML) to monitor fraudulent transactions on its website. The company is using Amazon SageMaker to research, train, deploy, and monitor the ML models.

The historical transactions data is in a .csv file that is stored in Amazon S3 The data contains features such as the user's IP address, navigation time, average time on each page, and the number of clicks for ....session. There is no label in the data to indicate if a transaction is anomalous.

Which models should the company use in combination to detect anomalous transactions? (Select TWO.)

A.

IP Insights

B.

K-nearest neighbors (k-NN)

C.

Linear learner with a logistic function

D.

Random Cut Forest (RCF)

E.

XGBoost

Full Access
Question # 24

A Machine Learning Specialist built an image classification deep learning model. However the Specialist ran into an overfitting problem in which the training and testing accuracies were 99% and 75%r respectively.

How should the Specialist address this issue and what is the reason behind it?

A.

The learning rate should be increased because the optimization process was trapped at a local minimum.

B.

The dropout rate at the flatten layer should be increased because the model is not generalized enough.

C.

The dimensionality of dense layer next to the flatten layer should be increased because the model is not complex enough.

D.

The epoch number should be increased because the optimization process was terminated before it reached the global minimum.

Full Access
Question # 25

A Machine Learning Specialist uploads a dataset to an Amazon S3 bucket protected with server-side

encryption using AWS KMS.

How should the ML Specialist define the Amazon SageMaker notebook instance so it can read the same

dataset from Amazon S3?

A.

Define security group(s) to allow all HTTP inbound/outbound traffic and assign those security group(s) tothe Amazon SageMaker notebook instance.

B.

Сonfigure the Amazon SageMaker notebook instance to have access to the VPC. Grant permission in theKMS key policy to the notebook’s KMS role.

C.

Assign an IAM role to the Amazon SageMaker notebook with S3 read access to the dataset. Grantpermission in the KMS key policy to that role.

D.

Assign the same KMS key used to encrypt data in Amazon S3 to the Amazon SageMaker notebookinstance.

Full Access
Question # 26

A manufacturing company needs to identify returned smartphones that have been damaged by moisture. The company has an automated process that produces 2.000 diagnostic values for each phone. The database contains more than five million phone evaluations. The evaluation process is consistent, and there are no missing values in the data. A machine learning (ML) specialist has trained an Amazon SageMaker linear learner ML model to classify phones as moisture damaged or not moisture damaged by using all available features. The model's F1 score is 0.6.

What changes in model training would MOST likely improve the model's F1 score? (Select TWO.)

A.

Continue to use the SageMaker linear learner algorithm. Reduce the number of features with the SageMaker principal component analysis (PCA) algorithm.

B.

Continue to use the SageMaker linear learner algorithm. Reduce the number of features with the scikit-iearn multi-dimensional scaling (MDS) algorithm.

C.

Continue to use the SageMaker linear learner algorithm. Set the predictor type to regressor.

D.

Use the SageMaker k-means algorithm with k of less than 1.000 to train the model

E.

Use the SageMaker k-nearest neighbors (k-NN) algorithm. Set a dimension reduction target of less than 1,000 to train the model.

Full Access
Question # 27

A Machine Learning Specialist has completed a proof of concept for a company using a small data sample and now the Specialist is ready to implement an end-to-end solution in AWS using Amazon SageMaker The historical training data is stored in Amazon RDS

Which approach should the Specialist use for training a model using that data?

A.

Write a direct connection to the SQL database within the notebook and pull data in

B.

Push the data from Microsoft SQL Server to Amazon S3 using an AWS Data Pipeline and provide the S3 location within the notebook.

C.

Move the data to Amazon DynamoDB and set up a connection to DynamoDB within the notebook to pull data in

D.

Move the data to Amazon ElastiCache using AWS DMS and set up a connection within the notebook to pull data in for fast access.

Full Access
Question # 28

A Data Scientist is developing a machine learning model to predict future patient outcomes based on information collected about each patient and their treatment plans. The model should output a continuous value as its prediction. The data available includes labeled outcomes for a set of 4,000 patients. The study was conducted on a group of individuals over the age of 65 who have a particular disease that is known to worsen with age.

Initial models have performed poorly. While reviewing the underlying data, the Data Scientist notices that, out of 4,000 patient observations, there are 450 where the patient age has been input as 0. The other features for these observations appear normal compared to the rest of the sample population.

How should the Data Scientist correct this issue?

A.

Drop all records from the dataset where age has been set to 0.

B.

Replace the age field value for records with a value of 0 with the mean or median value from the dataset.

C.

Drop the age feature from the dataset and train the model using the rest of the features.

D.

Use k-means clustering to handle missing features.

Full Access
Question # 29

A pharmaceutical company performs periodic audits of clinical trial sites to quickly resolve critical findings. The company stores audit documents in text format. Auditors have requested help from a data science team to quickly analyze the documents. The auditors need to discover the 10 main topics within the documents to prioritize and distribute the review work among the auditing team members. Documents that describe adverse events must receive the highest priority.

A data scientist will use statistical modeling to discover abstract topics and to provide a list of the top words for each category to help the auditors assess the relevance of the topic.

Which algorithms are best suited to this scenario? (Choose two.)

A.

Latent Dirichlet allocation (LDA)

B.

Random Forest classifier

C.

Neural topic modeling (NTM)

D.

Linear support vector machine

E.

Linear regression

Full Access
Question # 30

A Data Scientist is training a multilayer perception (MLP) on a dataset with multiple classes. The target class of interest is unique compared to the other classes within the dataset, but it does not achieve and acceptable ecall metric. The Data Scientist has already tried varying the number and size of the MLP’s hidden layers,

which has not significantly improved the results. A solution to improve recall must be implemented as quickly as possible.

Which techniques should be used to meet these requirements?

A.

Gather more data using Amazon Mechanical Turk and then retrain

B.

Train an anomaly detection model instead of an MLP

C.

Train an XGBoost model instead of an MLP

D.

Add class weights to the MLP’s loss function and then retrain

Full Access
Question # 31

A company needs to deploy a chatbot to answer common questions from customers. The chatbot must base its answers on company documentation.

Which solution will meet these requirements with the LEAST development effort?

A.

Index company documents by using Amazon Kendra. Integrate the chatbot with Amazon Kendra by using the Amazon Kendra Query API operation to answer customer questions.

B.

Train a Bidirectional Attention Flow (BiDAF) network based on past customer questions and company documents. Deploy the model as a real-time Amazon SageMaker endpoint. Integrate the model with the chatbot by using the SageMaker Runtime InvokeEndpoint API operation to answer customer questions.

C.

Train an Amazon SageMaker BlazingText model based on past customer questions and company documents. Deploy the model as a real-time SageMaker endpoint. Integrate the model with the chatbot by using the SageMaker Runtime InvokeEndpoint API operation to answer customer questions.

D.

Index company documents by using Amazon OpenSearch Service. Integrate the chatbot with OpenSearch Service by using the OpenSearch Service k-nearest neighbors (k-NN) Query API operation to answer customer questions.

Full Access
Question # 32

A data scientist needs to identify fraudulent user accounts for a company's ecommerce platform. The company wants the ability to determine if a newly created account is associated with a previously known fraudulent user. The data scientist is using AWS Glue to cleanse the company's application logs during ingestion.

Which strategy will allow the data scientist to identify fraudulent accounts?

A.

Execute the built-in FindDuplicates Amazon Athena query.

B.

Create a FindMatches machine learning transform in AWS Glue.

C.

Create an AWS Glue crawler to infer duplicate accounts in the source data.

D.

Search for duplicate accounts in the AWS Glue Data Catalog.

Full Access
Question # 33

A company will use Amazon SageMaker to train and host a machine learning (ML) model for a marketing campaign. The majority of data is sensitive customer data. The data must be encrypted at rest. The company wants AWS to maintain the root of trust for the master keys and wants encryption key usage to be logged.

Which implementation will meet these requirements?

A.

Use encryption keys that are stored in AWS Cloud HSM to encrypt the ML data volumes, and to encrypt the model artifacts and data in Amazon S3.

B.

Use SageMaker built-in transient keys to encrypt the ML data volumes. Enable default encryption for new Amazon Elastic Block Store (Amazon EBS) volumes.

C.

Use customer managed keys in AWS Key Management Service (AWS KMS) to encrypt the ML data volumes, and to encrypt the model artifacts and data in Amazon S3.

D.

Use AWS Security Token Service (AWS STS) to create temporary tokens to encrypt the ML storage volumes, and to encrypt the model artifacts and data in Amazon S3.

Full Access
Question # 34

A company is running a machine learning prediction service that generates 100 TB of predictions every day A Machine Learning Specialist must generate a visualization of the daily precision-recall curve from the predictions, and forward a read-only version to the Business team.

Which solution requires the LEAST coding effort?

A.

Run a daily Amazon EMR workflow to generate precision-recall data, and save the results in Amazon S3 Give the Business team read-only access to S3

B.

Generate daily precision-recall data in Amazon QuickSight, and publish the results in a dashboard shared with the Business team

C.

Run a daily Amazon EMR workflow to generate precision-recall data, and save the results in Amazon S3 Visualize the arrays in Amazon QuickSight, and publish them in a dashboard shared with the Business team

D.

Generate daily precision-recall data in Amazon ES, and publish the results in a dashboard shared with the Business team.

Full Access
Question # 35

A data scientist wants to use Amazon Forecast to build a forecasting model for inventory demand for a retail company. The company has provided a dataset of historic inventory demand for its products as a .csv file stored in an Amazon S3 bucket. The table below shows a sample of the dataset.

How should the data scientist transform the data?

A.

Use ETL jobs in AWS Glue to separate the dataset into a target time series dataset and an item metadata dataset. Upload both datasets as .csv files to Amazon S3.

B.

Use a Jupyter notebook in Amazon SageMaker to separate the dataset into a related time series dataset and an item metadata dataset. Upload both datasets as tables in Amazon Aurora.

C.

Use AWS Batch jobs to separate the dataset into a target time series dataset, a related time series dataset, and an item metadata dataset. Upload them directly to Forecast from a local machine.

D.

Use a Jupyter notebook in Amazon SageMaker to transform the data into the optimized protobuf recordIO format. Upload the dataset in this format to Amazon S3.

Full Access
Question # 36

Amazon Connect has recently been tolled out across a company as a contact call center The solution has been configured to store voice call recordings on Amazon S3

The content of the voice calls are being analyzed for the incidents being discussed by the call operators Amazon Transcribe is being used to convert the audio to text, and the output is stored on Amazon S3

Which approach will provide the information required for further analysis?

A.

Use Amazon Comprehend with the transcribed files to build the key topics

B.

Use Amazon Translate with the transcribed files to train and build a model for the key topics

C.

Use the AWS Deep Learning AMI with Gluon Semantic Segmentation on the transcribed files to train and build a model for the key topics

D.

Use the Amazon SageMaker k-Nearest-Neighbors (kNN) algorithm on the transcribed files to generate a word embeddings dictionary for the key topics

Full Access
Question # 37

A large company has developed a B1 application that generates reports and dashboards using data collected from various operational metrics The company wants to provide executives with an enhanced experience so they can use natural language to get data from the reports The company wants the executives to be able ask questions using written and spoken interlaces

Which combination of services can be used to build this conversational interface? (Select THREE)

A.

Alexa for Business

B.

Amazon Connect

C.

Amazon Lex

D.

Amazon Poly

E.

Amazon Comprehend

F.

Amazon Transcribe

Full Access
Question # 38

A Machine Learning Specialist needs to be able to ingest streaming data and store it in Apache Parquet files for exploration and analysis. Which of the following services would both ingest and store this data in the correct format?

A.

AWSDMS

B.

Amazon Kinesis Data Streams

C.

Amazon Kinesis Data Firehose

D.

Amazon Kinesis Data Analytics

Full Access
Question # 39

A Data Scientist is developing a machine learning model to classify whether a financial transaction is fraudulent. The labeled data available for training consists of 100,000 non-fraudulent observations and 1,000 fraudulent observations.

The Data Scientist applies the XGBoost algorithm to the data, resulting in the following confusion matrix when the trained model is applied to a previously unseen validation dataset. The accuracy of the model is 99.1%, but the Data Scientist needs to reduce the number of false negatives.

Which combination of steps should the Data Scientist take to reduce the number of false negative predictions by the model? (Choose two.)

A.

Change the XGBoost eval_metric parameter to optimize based on Root Mean Square Error (RMSE).

B.

Increase the XGBoost scale_pos_weight parameter to adjust the balance of positive and negative weights.

C.

Increase the XGBoost max_depth parameter because the model is currently underfitting the data.

D.

Change the XGBoost eval_metric parameter to optimize based on Area Under the ROC Curve (AUC).

E.

Decrease the XGBoost max_depth parameter because the model is currently overfitting the data.

Full Access
Question # 40

A Machine Learning Specialist at a company sensitive to security is preparing a dataset for model training. The dataset is stored in Amazon S3 and contains Personally Identifiable Information (Pll). The dataset:

* Must be accessible from a VPC only.

* Must not traverse the public internet.

How can these requirements be satisfied?

A.

Create a VPC endpoint and apply a bucket access policy that restricts access to the given VPC endpoint and the VPC.

B.

Create a VPC endpoint and apply a bucket access policy that allows access from the given VPC endpoint and an Amazon EC2 instance.

C.

Create a VPC endpoint and use Network Access Control Lists (NACLs) to allow traffic between only the given VPC endpoint and an Amazon EC2 instance.

D.

Create a VPC endpoint and use security groups to restrict access to the given VPC endpoint and an Amazon EC2 instance.

Full Access
Question # 41

A manufacturing company uses machine learning (ML) models to detect quality issues. The models use images that are taken of the company's product at the end of each production step. The company has thousands of machines at the production site that generate one image per second on average.

The company ran a successful pilot with a single manufacturing machine. For the pilot, ML specialists used an industrial PC that ran AWS IoT Greengrass with a long-running AWS Lambda function that uploaded the images to Amazon S3. The uploaded images invoked a Lambda function that was written in Python to perform inference by using an Amazon SageMaker endpoint that ran a custom model. The inference results were forwarded back to a web service that was hosted at the production site to prevent faulty products from being shipped.

The company scaled the solution out to all manufacturing machines by installing similarly configured industrial PCs on each production machine. However, latency for predictions increased beyond acceptable limits. Analysis shows that the internet connection is at its capacity limit.

How can the company resolve this issue MOST cost-effectively?

A.

Set up a 10 Gbps AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images. Increase the size of the instances and the number of instances that are used by the SageMaker endpoint.

B.

Extend the long-running Lambda function that runs on AWS IoT Greengrass to compress the images and upload the compressed files to Amazon S3. Decompress the files by using a separate Lambda function that invokes the existing Lambda function to run the inference pipeline.

C.

Use auto scaling for SageMaker. Set up an AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images.

D.

Deploy the Lambda function and the ML models onto the AWS IoT Greengrass core that is running on the industrial PCs that are installed on each machine. Extend the long-running Lambda function that runs on AWS IoT Greengrass to invoke the Lambda function with the captured images and run the inference on the edge component that forwards the results directly to the web service.

Full Access
Question # 42

An aircraft engine manufacturing company is measuring 200 performance metrics in a time-series. Engineers

want to detect critical manufacturing defects in near-real time during testing. All of the data needs to be stored

for offline analysis.

What approach would be the MOST effective to perform near-real time defect detection?

A.

Use AWS IoT Analytics for ingestion, storage, and further analysis. Use Jupyter notebooks from withinAWS IoT Analytics to carry out analysis for anomalies.

B.

Use Amazon S3 for ingestion, storage, and further analysis. Use an Amazon EMR cluster to carry outApache Spark ML k-means clustering to determine anomalies.

C.

Use Amazon S3 for ingestion, storage, and further analysis. Use the Amazon SageMaker Random CutForest (RCF) algorithm to determine anomalies.

D.

Use Amazon Kinesis Data Firehose for ingestion and Amazon Kinesis Data Analytics Random Cut Forest(RCF) to perform anomaly detection. Use Kinesis Data Firehose to store data in Amazon S3 for furtheranalysis.

Full Access
Question # 43

A Machine Learning Specialist prepared the following graph displaying the results of k-means for k = [1:10]

Considering the graph, what is a reasonable selection for the optimal choice of k?

A.

1

B.

4

C.

7

D.

10

Full Access
Question # 44

An ecommerce company has developed a XGBoost model in Amazon SageMaker to predict whether a customer will return a purchased item. The dataset is imbalanced. Only 5% of customers return items

A data scientist must find the hyperparameters to capture as many instances of returned items as possible. The company has a small budget for compute.

How should the data scientist meet these requirements MOST cost-effectively?

A.

Tune all possible hyperparameters by using automatic model tuning (AMT). Optimize on {"HyperParameterTuningJobObjective": {"MetricName": "validation:accuracy", "Type": "Maximize"}}

B.

Tune the csv_weight hyperparameter and the scale_pos_weight hyperparameter by using automatic model tuning (AMT). Optimize on {"HyperParameterTuningJobObjective": {"MetricName": "validation:f1", "Type": "Maximize"}}.

C.

Tune all possible hyperparameters by using automatic model tuning (AMT). Optimize on {"HyperParameterTuningJobObjective": {"MetricName": "validation:f1", "Type": "Maximize"}}.

D.

Tune the csv_weight hyperparameter and the scale_pos_weight hyperparameter by using automatic model tuning (AMT). Optimize on {"HyperParameterTuningJobObjective": {"MetricName": "validation:f1", "Type": "Minimize"}).

Full Access
Question # 45

A data scientist is building a new model for an ecommerce company. The model will predict how many minutes it will take to deliver a package.

During model training, the data scientist needs to evaluate model performance.

Which metrics should the data scientist use to meet this requirement? (Select TWO.)

A.

InferenceLatency

B.

Mean squared error (MSE)

C.

Root mean squared error (RMSE)

D.

Precision

E.

Accuracy

Full Access
Question # 46

A machine learning (ML) specialist uploads 5 TB of data to an Amazon SageMaker Studio environment. The ML specialist performs initial data cleansing. Before the ML specialist begins to train a model, the ML specialist needs to create and view an analysis report that details potential bias in the uploaded data.

Which combination of actions will meet these requirements with the LEAST operational overhead? (Choose two.)

A.

Use SageMaker Clarify to automatically detect data bias

B.

Turn on the bias detection option in SageMaker Ground Truth to automatically analyze data features.

C.

Use SageMaker Model Monitor to generate a bias drift report.

D.

Configure SageMaker Data Wrangler to generate a bias report.

E.

Use SageMaker Experiments to perform a data check

Full Access
Question # 47

A Machine Learning Specialist observes several performance problems with the training portion of a machine learning solution on Amazon SageMaker The solution uses a large training dataset 2 TB in size and is using the SageMaker k-means algorithm The observed issues include the unacceptable length of time it takes before the training job launches and poor I/O throughput while training the model

What should the Specialist do to address the performance issues with the current solution?

A.

Use the SageMaker batch transform feature

B.

Compress the training data into Apache Parquet format.

C.

Ensure that the input mode for the training job is set to Pipe.

D.

Copy the training dataset to an Amazon EFS volume mounted on the SageMaker instance.

Full Access
Question # 48

A company is using Amazon SageMaker to build a machine learning (ML) model to predict customer churn based on customer call transcripts. Audio files from customer calls are located in an on-premises VoIP system that has petabytes of recorded calls. The on-premises infrastructure has high-velocity networking and connects to the company's AWS infrastructure through a VPN connection over a 100 Mbps connection.

The company has an algorithm for transcribing customer calls that requires GPUs for inference. The company wants to store these transcriptions in an Amazon S3 bucket in the AWS Cloud for model development.

Which solution should an ML specialist use to deliver the transcriptions to the S3 bucket as quickly as possible?

A.

Order and use an AWS Snowball Edge Compute Optimized device with an NVIDIA Tesla module to run the transcription algorithm. Use AWS DataSync to send the resulting transcriptions to the transcription S3 bucket.

B.

Order and use an AWS Snowcone device with Amazon EC2 Inf1 instances to run the transcription algorithm Use AWS DataSync to send the resulting transcriptions to the transcription S3 bucket

C.

Order and use AWS Outposts to run the transcription algorithm on GPU-based Amazon EC2 instances. Store the resulting transcriptions in the transcription S3 bucket.

D.

Use AWS DataSync to ingest the audio files to Amazon S3. Create an AWS Lambda function to run the transcription algorithm on the audio files when they are uploaded to Amazon S3. Configure the function to write the resulting transcriptions to the transcription S3 bucket.

Full Access
Question # 49

A Machine Learning Specialist is using Apache Spark for pre-processing training data As part of the Spark pipeline, the Specialist wants to use Amazon SageMaker for training a model and hosting it Which of the following would the Specialist do to integrate the Spark application with SageMaker? (Select THREE)

A.

Download the AWS SDK for the Spark environment

B.

Install the SageMaker Spark library in the Spark environment.

C.

Use the appropriate estimator from the SageMaker Spark Library to train a model.

D.

Compress the training data into a ZIP file and upload it to a pre-defined Amazon S3 bucket.

E.

Use the sageMakerModel. transform method to get inferences from the model hosted in SageMaker

F.

Convert the DataFrame object to a CSV file, and use the CSV file as input for obtaining inferences from SageMaker.

Full Access
Question # 50

A machine learning (ML) engineer is integrating a production model with a customer metadata repository for real-time inference. The repository is hosted in Amazon SageMaker Feature Store. The engineer wants to retrieve only the latest version of the customer metadata record for a single customer at a time.

Which solution will meet these requirements?

A.

Use the SageMaker Feature Store BatchGetRecord API with the record identifier. Filter to find the latest record.

B.

Create an Amazon Athena query to retrieve the data from the feature table.

C.

Create an Amazon Athena query to retrieve the data from the feature table. Use the write_time value to find the latest record.

D.

Use the SageMaker Feature Store GetRecord API with the record identifier.

Full Access
Question # 51

A company needs to quickly make sense of a large amount of data and gain insight from it. The data is in different formats, the schemas change frequently, and new data sources are added regularly. The company wants to use AWS services to explore multiple data sources, suggest schemas, and enrich and transform the data. The solution should require the least possible coding effort for the data flows and the least possible infrastructure management.

Which combination of AWS services will meet these requirements?

A.

Amazon EMR for data discovery, enrichment, and transformationAmazon Athena for querying and analyzing the results in Amazon S3 using standard SQLAmazon QuickSight for reporting and getting insights

B.

Amazon Kinesis Data Analytics for data ingestionAmazon EMR for data discovery, enrichment, and transformationAmazon Redshift for querying and analyzing the results in Amazon S3

C.

AWS Glue for data discovery, enrichment, and transformationAmazon Athena for querying and analyzing the results in Amazon S3 using standard SQLAmazon QuickSight for reporting and getting insights

D.

AWS Data Pipeline for data transferAWS Step Functions for orchestrating AWS Lambda jobs for data discovery, enrichment, and transformationAmazon Athena for querying and analyzing the results in Amazon S3 using standard SQLAmazon QuickSight for reporting and getting insights

Full Access
Question # 52

A real estate company wants to create a machine learning model for predicting housing prices based on a

historical dataset. The dataset contains 32 features.

Which model will meet the business requirement?

A.

Logistic regression

B.

Linear regression

C.

K-means

D.

Principal component analysis (PCA)

Full Access
Question # 53

Acybersecurity company is collecting on-premises server logs, mobile app logs, and loT sensor data. The company backs up the ingested data in an Amazon S3 bucket and sends the ingested data to Amazon OpenSearch Service for further analysis. Currently, the company has a custom ingestion pipeline that is running on Amazon EC2 instances. The company needs to implement a new serverless ingestion pipeline that can automatically scale to handle sudden changes in the data flow.

Which solution will meet these requirements MOST cost-effectively?

A.

Create two Amazon Data Firehose delivery streams to send data to the S3 bucket and OpenSearch Service. Configure the data sources to send data to the delivery streams.

B.

Create one Amazon Kinesis data stream. Create two Amazon Data Firehose delivery streams to send data to the S3 bucket and OpenSearch Service. Connect the delivery streams to the data stream. Configure the data sources to send data to the data stream.

C.

Create one Amazon Data Firehose delivery stream to send data to OpenSearch Service. Configure the delivery stream to back up the raw data to the S3 bucket. Configure the data sources to send data to the delivery stream.

D.

Create one Amazon Kinesis data stream. Create one Amazon Data Firehose delivery stream to send data to OpenSearch Service. Configure the delivery stream to back up the data to the S3 bucket. Connect the delivery stream to the data stream. Configure the data sources to send data to the data stream.

Full Access
Question # 54

A machine learning (ML) specialist is developing a model for a company. The model will classify and predict sequences of objects that are displayed in a video. The ML specialist decides to use a hybrid architecture that consists of a convolutional neural network (CNN) followed by a classifier three-layer recurrent neural network (RNN).

The company developed a similar model previously but trained the model to classify a different set of objects. The ML specialist wants to save time by using the previously trained model and adapting the model for the current use case and set of objects.

Which combination of steps will accomplish this goal with the LEAST amount of effort? (Select TWO.)

A.

Reinitialize the weights of the entire CNN. Retrain the CNN on the classification task by using the new set of objects.

B.

Reinitialize the weights of the entire network. Retrain the entire network on the prediction task by using the new set of objects.

C.

Reinitialize the weights of the entire RNN. Retrain the entire model on the prediction task by using the new set of objects.

D.

Reinitialize the weights of the last fully connected layer of the CNN. Retrain the CNN on the classification task by using the new set of objects.

E.

Reinitialize the weights of the last layer of the RNN. Retrain the entire model on the prediction task by using the new set of objects.

Full Access
Question # 55

A Machine Learning Specialist is developing recommendation engine for a photography blog Given a picture, the recommendation engine should show a picture that captures similar objects The Specialist would like to create a numerical representation feature to perform nearest-neighbor searches

What actions would allow the Specialist to get relevant numerical representations?

A.

Reduce image resolution and use reduced resolution pixel values as features

B.

Use Amazon Mechanical Turk to label image content and create a one-hot representation indicating the presence of specific labels

C.

Run images through a neural network pie-trained on ImageNet, and collect the feature vectors from the penultimate layer

D.

Average colors by channel to obtain three-dimensional representations of images.

Full Access
Question # 56

A car company has dealership locations in multiple cities. The company uses a machine learning (ML) recommendation system to market cars to its customers.

An ML engineer trained the ML recommendation model on a dataset that includes multiple attributes about each car. The dataset includes attributes such as car brand, car type, fuel efficiency, and price.

The ML engineer uses Amazon SageMaker Data Wrangler to analyze and visualize data. The ML engineer needs to identify the distribution of car prices for a specific type of car.

Which type of visualization should the ML engineer use to meet these requirements?

A.

Use the SageMaker Data Wrangler scatter plot visualization to inspect the relationship between the car price and type of car.

B.

Use the SageMaker Data Wrangler quick model visualization to quickly evaluate the data and produce importance scores for the car price and type of car.

C.

Use the SageMaker Data Wrangler anomaly detection visualization to identify outliers for the specific features.

D.

Use the SageMaker Data Wrangler histogram visualization to inspect the range of values for the specific feature.

Full Access
Question # 57

A manufacturing company wants to use machine learning (ML) to automate quality control in its facilities. The facilities are in remote locations and have limited internet connectivity. The company has 20 ТВ of training data that consists of labeled images of defective product parts. The training data is in the corporate on-premises data center.

The company will use this data to train a model for real-time defect detection in new parts as the parts move on a conveyor belt in the facilities. The company needs a solution that minimizes costs for compute infrastructure and that maximizes the scalability of resources for training. The solution also must facilitate the company’s use of an ML model in the low-connectivity environments.

Which solution will meet these requirements?

A.

Move the training data to an Amazon S3 bucket. Train and evaluate the model by using Amazon SageMaker. Optimize the model by using SageMaker Neo. Deploy the model on a SageMaker hosting services endpoint.

B.

Train and evaluate the model on premises. Upload the model to an Amazon S3 bucket. Deploy the model on an Amazon SageMaker hosting services endpoint.

C.

Move the training data to an Amazon S3 bucket. Train and evaluate the model by using Amazon SageMaker. Optimize the model by using SageMaker Neo. Set up an edge device in the manufacturing facilities with AWS IoT Greengrass. Deploy the model on the edge device.

D.

Train the model on premises. Upload the model to an Amazon S3 bucket. Set up an edge device in the manufacturing facilities with AWS IoT Greengrass. Deploy the model on the edge device.

Full Access
Question # 58

A Machine Learning Specialist trained a regression model, but the first iteration needs optimizing. The Specialist needs to understand whether the model is more frequently overestimating or underestimating the target.

What option can the Specialist use to determine whether it is overestimating or underestimating the target value?

A.

Root Mean Square Error (RMSE)

B.

Residual plots

C.

Area under the curve

D.

Confusion matrix

Full Access
Question # 59

A Machine Learning Specialist is designing a system for improving sales for a company. The objective is to use the large amount of information the company has on users' behavior and product preferences to predict which products users would like based on the users' similarity to other users.

What should the Specialist do to meet this objective?

A.

Build a content-based filtering recommendation engine with Apache Spark ML on Amazon EMR.

B.

Build a collaborative filtering recommendation engine with Apache Spark ML on Amazon EMR.

C.

Build a model-based filtering recommendation engine with Apache Spark ML on Amazon EMR.

D.

Build a combinative filtering recommendation engine with Apache Spark ML on Amazon EMR.

Full Access
Question # 60

An ecommerce company is automating the categorization of its products based on images. A data scientist has trained a computer vision model using the Amazon SageMaker image classification algorithm. The images for each product are classified according to specific product lines. The accuracy of the model is too low when categorizing new products. All of the product images have the same dimensions and are stored within an Amazon S3 bucket. The company wants to improve the model so it can be used for new products as soon as possible.

Which steps would improve the accuracy of the solution? (Choose three.)

A.

Use the SageMaker semantic segmentation algorithm to train a new model to achieve improved accuracy.

B.

Use the Amazon Rekognition DetectLabels API to classify the products in the dataset.

C.

Augment the images in the dataset. Use open-source libraries to crop, resize, flip, rotate, and adjust the brightness and contrast of the images.

D.

Use a SageMaker notebook to implement the normalization of pixels and scaling of the images. Store the new dataset in Amazon S3.

E.

Use Amazon Rekognition Custom Labels to train a new model.

F.

Check whether there are class imbalances in the product categories, and apply oversampling or undersampling as required. Store the new dataset in Amazon S3.

Full Access
Question # 61

A machine learning specialist is preparing data for training on Amazon SageMaker. The specialist is using one of the SageMaker built-in algorithms for the training. The dataset is stored in .CSV format and is transformed into a numpy.array, which appears to be negatively affecting the speed of the training.

What should the specialist do to optimize the data for training on SageMaker?

A.

Use the SageMaker batch transform feature to transform the training data into a DataFrame.

B.

Use AWS Glue to compress the data into the Apache Parquet format.

C.

Transform the dataset into the RecordIO protobuf format.

D.

Use the SageMaker hyperparameter optimization feature to automatically optimize the data.

Full Access
Question # 62

A data scientist for a medical diagnostic testing company has developed a machine learning (ML) model to identify patients who have a specific disease. The dataset that the scientist used to train the model is imbalanced. The dataset contains a large number of healthy patients and only a small number of patients who have the disease. The model should consider that patients who are incorrectly identified as positive for the disease will increase costs for the company.

Which metric will MOST accurately evaluate the performance of this model?

A.

Recall

B.

F1 score

C.

Accuracy

D.

Precision

Full Access
Question # 63

A Machine Learning Specialist must build out a process to query a dataset on Amazon S3 using Amazon Athena The dataset contains more than 800.000 records stored as plaintext CSV files Each record contains 200 columns and is approximately 1 5 MB in size Most queries will span 5 to 10 columns only

How should the Machine Learning Specialist transform the dataset to minimize query runtime?

A.

Convert the records to Apache Parquet format

B.

Convert the records to JSON format

C.

Convert the records to GZIP CSV format

D.

Convert the records to XML format

Full Access
Question # 64

A company is building a predictive maintenance model based on machine learning (ML). The data is stored in a fully private Amazon S3 bucket that is encrypted at rest with AWS Key Management Service (AWS KMS) CMKs. An ML specialist must run data preprocessing by using an Amazon SageMaker Processing job that is triggered from code in an Amazon SageMaker notebook. The job should read data from Amazon S3, process it, and upload it back to the same S3 bucket. The preprocessing code is stored in a container image in Amazon Elastic Container Registry (Amazon ECR). The ML specialist needs to grant permissions to ensure a smooth data preprocessing workflow.

Which set of actions should the ML specialist take to meet these requirements?

A.

Create an IAM role that has permissions to create Amazon SageMaker Processing jobs, S3 read and write access to the relevant S3 bucket, and appropriate KMS and ECR permissions. Attach the role to the SageMaker notebook instance. Create an Amazon SageMaker Processing job from the notebook.

B.

Create an IAM role that has permissions to create Amazon SageMaker Processing jobs. Attach the role to the SageMaker notebook instance. Create an Amazon SageMaker Processing job with an IAM role that has read and write permissions to the relevant S3 bucket, and appropriate KMS and ECR permissions.

C.

Create an IAM role that has permissions to create Amazon SageMaker Processing jobs and to access Amazon ECR. Attach the role to the SageMaker notebook instance. Set up both an S3 endpoint and a KMS endpoint in the default VPC. Create Amazon SageMaker Processing jobs from the notebook.

D.

Create an IAM role that has permissions to create Amazon SageMaker Processing jobs. Attach the role to the SageMaker notebook instance. Set up an S3 endpoint in the default VPC. Create Amazon SageMaker Processing jobs with the access key and secret key of the IAM user with appropriate KMS and ECR permissions.

Full Access
Question # 65

A machine learning specialist works for a fruit processing company and needs to build a system that

categorizes apples into three types. The specialist has collected a dataset that contains 150 images for each type of apple and applied transfer learning on a neural network that was pretrained on ImageNet with this dataset.

The company requires at least 85% accuracy to make use of the model.

After an exhaustive grid search, the optimal hyperparameters produced the following:

68% accuracy on the training set

67% accuracy on the validation set

What can the machine learning specialist do to improve the system’s accuracy?

A.

Upload the model to an Amazon SageMaker notebook instance and use the Amazon SageMaker HPO feature to optimize the model’s hyperparameters.

B.

Add more data to the training set and retrain the model using transfer learning to reduce the bias.

C.

Use a neural network model with more layers that are pretrained on ImageNet and apply transfer learning to increase the variance.

D.

Train a new model using the current neural network architecture.

Full Access
Question # 66

A company offers an online shopping service to its customers. The company wants to enhance the site’s security by requesting additional information when customers access the site from locations that are different from their normal location. The company wants to update the process to call a machine learning (ML) model to determine when additional information should be requested.

The company has several terabytes of data from its existing ecommerce web servers containing the source IP addresses for each request made to the web server. For authenticated requests, the records also contain the login name of the requesting user.

Which approach should an ML specialist take to implement the new security feature in the web application?

A.

Use Amazon SageMaker Ground Truth to label each record as either a successful or failed access attempt. Use Amazon SageMaker to train a binary classification model using the factorization machines (FM) algorithm.

B.

Use Amazon SageMaker to train a model using the IP Insights algorithm. Schedule updates and retraining of the model using new log data nightly.

C.

Use Amazon SageMaker Ground Truth to label each record as either a successful or failed access attempt. Use Amazon SageMaker to train a binary classification model using the IP Insights algorithm.

D.

Use Amazon SageMaker to train a model using the Object2Vec algorithm. Schedule updates and retraining of the model using new log data nightly.

Full Access
Question # 67

A Machine Learning Specialist previously trained a logistic regression model using scikit-learn on a local

machine, and the Specialist now wants to deploy it to production for inference only.

What steps should be taken to ensure Amazon SageMaker can host a model that was trained locally?

A.

Build the Docker image with the inference code. Tag the Docker image with the registry hostname andupload it to Amazon ECR.

B.

Serialize the trained model so the format is compressed for deployment. Tag the Docker image with theregistry hostname and upload it to Amazon S3.

C.

Serialize the trained model so the format is compressed for deployment. Build the image and upload it toDocker Hub.

D.

Build the Docker image with the inference code. Configure Docker Hub and upload the image to Amazon ECR.

Full Access
Question # 68

A data scientist is trying to improve the accuracy of a neural network classification model. The data scientist wants to run a large hyperparameter tuning job in Amazon SageMaker.

However, previous smaller tuning jobs on the same model often ran for several weeks. The ML specialist wants to reduce the computation time required to run the tuning job.

Which actions will MOST reduce the computation time for the hyperparameter tuning job? (Select TWO.)

A.

Use the Hyperband tuning strategy.

B.

Increase the number of hyperparameters.

C.

Set a lower value for the MaxNumberOfTrainingJobs parameter.

D.

Use the grid search tuning strategy

E.

Set a lower value for the MaxParallelTrainingJobs parameter.

Full Access
Question # 69

A data scientist uses Amazon SageMaker Data Wrangler to analyze and visualize data. The data scientist wants to refine a training dataset by selecting predictor variables that are strongly predictive of the target variable. The target variable correlates with other predictor variables.

The data scientist wants to understand the variance in the data along various directions in the feature space.

Which solution will meet these requirements?

A.

Use the SageMaker Data Wrangler multicollinearity measurement features with a variance inflation factor (VIF) score. Use the VIF score as a measurement of how closely the variables are related to each other.

B.

Use the SageMaker Data Wrangler Data Quality and Insights Report quick model visualization to estimate the expected quality of a model that is trained on the data.

C.

Use the SageMaker Data Wrangler multicollinearity measurement features with the principal component analysis (PCA) algorithm to provide a feature space that includes all of the predictor variables.

D.

Use the SageMaker Data Wrangler Data Quality and Insights Report feature to review features by their predictive power.

Full Access
Question # 70

A company is building a new supervised classification model in an AWS environment. The company's data science team notices that the dataset has a large quantity of variables Ail the variables are numeric. The model accuracy for training and validation is low. The model's processing time is affected by high latency The data science team needs to increase the accuracy of the model and decrease the processing.

How it should the data science team do to meet these requirements?

A.

Create new features and interaction variables.

B.

Use a principal component analysis (PCA) model.

C.

Apply normalization on the feature set.

D.

Use a multiple correspondence analysis (MCA) model

Full Access
Question # 71

A Machine Learning team uses Amazon SageMaker to train an Apache MXNet handwritten digit classifier model using a research dataset. The team wants to receive a notification when the model is overfitting. Auditors want to view the Amazon SageMaker log activity report to ensure there are no unauthorized API calls.

What should the Machine Learning team do to address the requirements with the least amount of code and fewest steps?

A.

Implement an AWS Lambda function to long Amazon SageMaker API calls to Amazon S3. Add code to push a custom metric to Amazon CloudWatch. Create an alarm in CloudWatch with Amazon SNS to receive a notification when the model is overfitting.

B.

Use AWS CloudTrail to log Amazon SageMaker API calls to Amazon S3. Add code to push a custom metric to Amazon CloudWatch. Create an alarm in CloudWatch with Amazon SNS to receive a notification when the model is overfitting.

C.

Implement an AWS Lambda function to log Amazon SageMaker API calls to AWS CloudTrail. Add code to push a custom metric to Amazon CloudWatch. Create an alarm in CloudWatch with Amazon SNS to receive a notification when the model is overfitting.

D.

Use AWS CloudTrail to log Amazon SageMaker API calls to Amazon S3. Set up Amazon SNS to receive a notification when the model is overfitting.

Full Access
Question # 72

An office security agency conducted a successful pilot using 100 cameras installed at key locations within the main office. Images from the cameras were uploaded to Amazon S3 and tagged using Amazon Rekognition, and the results were stored in Amazon ES. The agency is now looking to expand the pilot into a full production system using thousands of video cameras in its office locations globally. The goal is to identify activities performed by non-employees in real time.

Which solution should the agency consider?

A.

Use a proxy server at each local office and for each camera, and stream the RTSP feed to a uniqueAmazon Kinesis Video Streams video stream. On each stream, use Amazon Rekognition Video and createa stream processor to detect faces from a collection of known employees, and alert when non-employeesare detected.

B.

Use a proxy server at each local office and for each camera, and stream the RTSP feed to a uniqueAmazon Kinesis Video Streams video stream. On each stream, use Amazon Rekognition Image to detectfaces from a collection of known employees and alert when non-employees are detected.

C.

Install AWS DeepLens cameras and use the DeepLens_Kinesis_Video module to stream video toAmazon Kinesis Video Streams for each camera. On each stream, use Amazon Rekognition Video andcreate a stream processor to detect faces from a collection on each stream, and alert when nonemployeesare detected.

D.

Install AWS DeepLens cameras and use the DeepLens_Kinesis_Video module to stream video toAmazon Kinesis Video Streams for each camera. On each stream, run an AWS Lambda function tocapture image fragments and then call Amazon Rekognition Image to detect faces from a collection ofknown employees, and alert when non-employees are detected.

Full Access
Question # 73

A Data Scientist is developing a binary classifier to predict whether a patient has a particular disease on a series of test results. The Data Scientist has data on 400 patients randomly selected from the population. The disease is seen in 3% of the population.

Which cross-validation strategy should the Data Scientist adopt?

A.

A k-fold cross-validation strategy with k=5

B.

A stratified k-fold cross-validation strategy with k=5

C.

A k-fold cross-validation strategy with k=5 and 3 repeats

D.

An 80/20 stratified split between training and validation

Full Access
Question # 74

A media company wants to deploy a machine learning (ML) model that uses Amazon SageMaker to recommend new articles to the company's readers. The company's readers are primarily located in a single city.

The company notices that the heaviest reader traffic predictably occurs early in the morning, after lunch, and again after work hours. There is very little traffic at other times of day. The media company needs to minimize the time required to deliver recommendations to its readers. The expected amount of data that the API call will return for inference is less than 4 MB.

Which solution will meet these requirements in the MOST cost-effective way?

A.

Real-time inference with auto scaling

B.

Serverless inference with provisioned concurrency

C.

Asynchronous inference

D.

A batch transform task

Full Access
Question # 75

A machine learning specialist is developing a regression model to predict rental rates from rental listings. A variable named Wall_Color represents the most prominent exterior wall color of the property. The following is the sample data, excluding all other variables:

* Building ID 1000 has a Wall_Color value of Red.

* Building ID 1001 has a Wall_Color value of White.

* Building ID 1002 has a Wall_Color value of Green.

The specialist chose a model that needs numerical input data.

Which feature engineering approaches should the specialist use to allow the regression model to learn from the Wall_Color data? (Choose two.)

A.

Apply integer transformation and set Red = 1, White = 5, and Green = 10.

B.

Add new columns that store one-hot representation of colors.

C.

Replace the color name string by its length.

D.

Create three columns to encode the color in RGB format.

E.

Replace each color name by its training set frequency.

Full Access
Question # 76

A retail company collects customer comments about its products from social media, the company website, and customer call logs. A team of data scientists and engineers wants to find common topics and determine which products the customers are referring to in their comments. The team is using natural language processing (NLP) to build a model to help with this classification.

Each product can be classified into multiple categories that the company defines. These categories are related but are not mutually exclusive. For example, if there is mention of "Sample Yogurt" in the document of customer comments, then "Sample Yogurt" should be classified as "yogurt," "snack," and "dairy product."

The team is using Amazon Comprehend to train the model and must complete the project as soon as possible.

Which functionality of Amazon Comprehend should the team use to meet these requirements?

A.

Custom classification with multi-class mode

B.

Custom classification with multi-label mode

C.

Custom entity recognition

D.

Built-in models

Full Access
Question # 77

A company is converting a large number of unstructured paper receipts into images. The company wants to create a model based on natural language processing (NLP) to find relevant entities such as date, location, and notes, as well as some custom entities such as receipt numbers.

The company is using optical character recognition (OCR) to extract text for data labeling. However, documents are in different structures and formats, and the company is facing challenges with setting up the manual workflows for each document type. Additionally, the company trained a named entity recognition (NER) model for custom entity detection using a small sample size. This model has a very low confidence score and will require retraining with a large dataset.

Which solution for text extraction and entity detection will require the LEAST amount of effort?

A.

Extract text from receipt images by using Amazon Textract. Use the Amazon SageMaker BlazingText algorithm to train on the text for entities and custom entities.

B.

Extract text from receipt images by using a deep learning OCR model from the AWS Marketplace. Use the NER deep learning model to extract entities.

C.

Extract text from receipt images by using Amazon Textract. Use Amazon Comprehend for entity detection, and use Amazon Comprehend custom entity recognition for custom entity detection.

D.

Extract text from receipt images by using a deep learning OCR model from the AWS Marketplace. Use Amazon Comprehend for entity detection, and use Amazon Comprehend custom entity recognition for custom entity detection.

Full Access
Question # 78

An insurance company is creating an application to automate car insurance claims. A machine learning (ML) specialist used an Amazon SageMaker Object Detection - TensorFlow built-in algorithm to train a model to detect scratches and dents in images of cars. After the model was trained, the ML specialist noticed that the model performed better on the training dataset than on the testing dataset.

Which approach should the ML specialist use to improve the performance of the model on the testing data?

A.

Increase the value of the momentum hyperparameter.

B.

Reduce the value of the dropout_rate hyperparameter.

C.

Reduce the value of the learning_rate hyperparameter.

D.

Increase the value of the L2 hyperparameter.

Full Access
Question # 79

A machine learning specialist is developing a proof of concept for government users whose primary concern is security. The specialist is using Amazon SageMaker to train a convolutional neural network (CNN) model for a photo classifier application. The specialist wants to protect the data so that it cannot be accessed and transferred to a remote host by malicious code accidentally installed on the training container.

Which action will provide the MOST secure protection?

A.

Remove Amazon S3 access permissions from the SageMaker execution role.

B.

Encrypt the weights of the CNN model.

C.

Encrypt the training and validation dataset.

D.

Enable network isolation for training jobs.

Full Access
Question # 80

An automotive company uses computer vision in its autonomous cars. The company trained its object detection models successfully by using transfer learning from a convolutional neural network (CNN). The company trained the models by using PyTorch through the Amazon SageMaker SDK.

The vehicles have limited hardware and compute power. The company wants to optimize the model to reduce memory, battery, and hardware consumption without a significant sacrifice in accuracy.

Which solution will improve the computational efficiency of the models?

A.

Use Amazon CloudWatch metrics to gain visibility into the SageMaker training weights, gradients, biases, and activation outputs. Compute the filter ranks based on the training information. Apply pruning to remove the low-ranking filters. Set new weights based on the pruned set of filters. Run a new training job with the pruned model.

B.

Use Amazon SageMaker Ground Truth to build and run data labeling workflows. Collect a larger labeled dataset with the labelling workflows. Run a new training job that uses the new labeled data with previous training data.

C.

Use Amazon SageMaker Debugger to gain visibility into the training weights, gradients, biases, and activation outputs. Compute the filter ranks based on the training information. Apply pruning to remove the low-ranking filters. Set the new weights based on the pruned set of filters. Run a new training job with the pruned model.

D.

Use Amazon SageMaker Model Monitor to gain visibility into the ModelLatency metric and OverheadLatency metric of the model after the company deploys the model. Increase the model learning rate. Run a new training job.

Full Access
Question # 81

A Machine Learning Specialist is preparing data for training on Amazon SageMaker The Specialist is transformed into a numpy .array, which appears to be negatively affecting the speed of the training

What should the Specialist do to optimize the data for training on SageMaker'?

A.

Use the SageMaker batch transform feature to transform the training data into a DataFrame

B.

Use AWS Glue to compress the data into the Apache Parquet format

C.

Transform the dataset into the Recordio protobuf format

D.

Use the SageMaker hyperparameter optimization feature to automatically optimize the data

Full Access
Question # 82

A Machine Learning Specialist is developing a daily ETL workflow containing multiple ETL jobs The workflow consists of the following processes

* Start the workflow as soon as data is uploaded to Amazon S3

* When all the datasets are available in Amazon S3, start an ETL job to join the uploaded datasets with multiple terabyte-sized datasets already stored in Amazon S3

* Store the results of joining datasets in Amazon S3

* If one of the jobs fails, send a notification to the Administrator

Which configuration will meet these requirements?

A.

Use AWS Lambda to trigger an AWS Step Functions workflow to wait for dataset uploads to complete in Amazon S3. Use AWS Glue to join the datasets Use an Amazon CloudWatch alarm to send an SNS notification to the Administrator in the case of a failure

B.

Develop the ETL workflow using AWS Lambda to start an Amazon SageMaker notebook instance Use a lifecycle configuration script to join the datasets and persist the results in Amazon S3 Use an Amazon CloudWatch alarm to send an SNS notification to the Administrator in the case of a failure

C.

Develop the ETL workflow using AWS Batch to trigger the start of ETL jobs when data is uploaded to Amazon S3 Use AWS Glue to join the datasets in Amazon S3 Use an Amazon CloudWatch alarm to send an SNS notification to the Administrator in the case of a failure

D.

Use AWS Lambda to chain other Lambda functions to read and join the datasets in Amazon S3 as soon as the data is uploaded to Amazon S3 Use an Amazon CloudWatch alarm to send an SNS notification to the Administrator in the case of a failure

Full Access
Question # 83

A data scientist is designing a repository that will contain many images of vehicles. The repository must scale automatically in size to store new images every day. The repository must support versioning of the images. The data scientist must implement a solution that maintains multiple immediately accessible copies of the data in different AWS Regions.

Which solution will meet these requirements?

A.

Amazon S3 with S3 Cross-Region Replication (CRR)

B.

Amazon Elastic Block Store (Amazon EBS) with snapshots that are shared in a secondary Region

C.

Amazon Elastic File System (Amazon EFS) Standard storage that is configured with Regional availability

D.

AWS Storage Gateway Volume Gateway

Full Access
Question # 84

A Machine Learning Specialist is deciding between building a naive Bayesian model or a full Bayesian network for a classification problem. The Specialist computes the Pearson correlation coefficients between each feature and finds that their absolute values range between 0.1 to 0.95.

Which model describes the underlying data in this situation?

A.

A naive Bayesian model, since the features are all conditionally independent.

B.

A full Bayesian network, since the features are all conditionally independent.

C.

A naive Bayesian model, since some of the features are statistically dependent.

D.

A full Bayesian network, since some of the features are statistically dependent.

Full Access
Question # 85

A Machine Learning Specialist is applying a linear least squares regression model to a dataset with 1 000 records and 50 features Prior to training, the ML Specialist notices that two features are perfectly linearly dependent

Why could this be an issue for the linear least squares regression model?

A.

It could cause the backpropagation algorithm to fail during training

B.

It could create a singular matrix during optimization which fails to define a unique solution

C.

It could modify the loss function during optimization causing it to fail during training

D.

It could introduce non-linear dependencies within the data which could invalidate the linear assumptions of the model

Full Access
Question # 86

A Machine Learning Specialist is working for an online retailer that wants to run analytics on every customer visit, processed through a machine learning pipeline. The data needs to be ingested by Amazon Kinesis Data Streams at up to 100 transactions per second, and the JSON data blob is 100 KB in size.

What is the MINIMUM number of shards in Kinesis Data Streams the Specialist should use to successfully ingest this data?

A.

1 shards

B.

10 shards

C.

100 shards

D.

1,000 shards

Full Access
Question # 87

A company is building a line-counting application for use in a quick-service restaurant. The company wants to use video cameras pointed at the line of customers at a given register to measure how many people are in line and deliver notifications to managers if the line grows too long. The restaurant locations have limited bandwidth for connections to external services and cannot accommodate multiple video streams without impacting other operations.

Which solution should a machine learning specialist implement to meet these requirements?

A.

Install cameras compatible with Amazon Kinesis Video Streams to stream the data to AWS over the restaurant's existing internet connection. Write an AWS Lambda function to take an image and send it to Amazon Rekognition to count the number of faces in the image. Send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.

B.

Deploy AWS DeepLens cameras in the restaurant to capture video. Enable Amazon Rekognition on the AWS DeepLens device, and use it to trigger a local AWS Lambda function when a person is recognized. Use the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.

C.

Build a custom model in Amazon SageMaker to recognize the number of people in an image. Install cameras compatible with Amazon Kinesis Video Streams in the restaurant. Write an AWS Lambda function to take an image. Use the SageMaker endpoint to call the model to count people. Send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.

D.

Build a custom model in Amazon SageMaker to recognize the number of people in an image. Deploy AWS DeepLens cameras in the restaurant. Deploy the model to the cameras. Deploy an AWS Lambda function to the cameras to use the model to count people and send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.

Full Access
Question # 88

A Machine Learning Specialist is training a model to identify the make and model of vehicles in images The Specialist wants to use transfer learning and an existing model trained on images of general objects The Specialist collated a large custom dataset of pictures containing different vehicle makes and models.

What should the Specialist do to initialize the model to re-train it with the custom data?

A.

Initialize the model with random weights in all layers including the last fully connected layer

B.

Initialize the model with pre-trained weights in all layers and replace the last fully connected layer.

C.

Initialize the model with random weights in all layers and replace the last fully connected layer

D.

Initialize the model with pre-trained weights in all layers including the last fully connected layer

Full Access
Question # 89

A company’s data scientist has trained a new machine learning model that performs better on test data than the company’s existing model performs in the production environment. The data scientist wants to replace the existing model that runs on an Amazon SageMaker endpoint in the production environment. However, the company is concerned that the new model might not work well on the production environment data.

The data scientist needs to perform A/B testing in the production environment to evaluate whether the new model performs well on production environment data.

Which combination of steps must the data scientist take to perform the A/B testing? (Choose two.)

A.

Create a new endpoint configuration that includes a production variant for each of the two models.

B.

Create a new endpoint configuration that includes two target variants that point to different endpoints.

C.

Deploy the new model to the existing endpoint.

D.

Update the existing endpoint to activate the new model.

E.

Update the existing endpoint to use the new endpoint configuration.

Full Access
Question # 90

A company wants to predict the classification of documents that are created from an application. New documents are saved to an Amazon S3 bucket every 3 seconds. The company has developed three versions of a machine learning (ML) model within Amazon SageMaker to classify document text. The company wants to deploy these three versions to predict the classification of each document.

Which approach will meet these requirements with the LEAST operational overhead?

A.

Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to create three SageMaker batch transform jobs, one batch transform job for each model for each document.

B.

Deploy all the models to a single SageMaker endpoint. Treat each model as a production variant. Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each production variant and return the results of each model.

C.

Deploy each model to its own SageMaker endpoint Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each endpoint and return the results of each model.

D.

Deploy each model to its own SageMaker endpoint. Create three AWS Lambda functions. Configure each Lambda function to call a different endpoint and return the results. Configure three S3 event notifications to invoke the Lambda functions when new documents are created.

Full Access
Question # 91

While reviewing the histogram for residuals on regression evaluation data a Machine Learning Specialist notices that the residuals do not form a zero-centered bell shape as shown What does this mean?

A.

The model might have prediction errors over a range of target values.

B.

The dataset cannot be accurately represented using the regression model

C.

There are too many variables in the model

D.

The model is predicting its target values perfectly.

Full Access
Question # 92

A Machine Learning Specialist is building a model that will perform time series forecasting using Amazon SageMaker The Specialist has finished training the model and is now planning to perform load testing on the endpoint so they can configure Auto Scaling for the model variant

Which approach will allow the Specialist to review the latency, memory utilization, and CPU utilization during the load test"?

A.

Review SageMaker logs that have been written to Amazon S3 by leveraging Amazon Athena and Amazon OuickSight to visualize logs as they are being produced

B.

Generate an Amazon CloudWatch dashboard to create a single view for the latency, memory utilization, and CPU utilization metrics that are outputted by Amazon SageMaker

C.

Build custom Amazon CloudWatch Logs and then leverage Amazon ES and Kibana to query and visualize the data as it is generated by Amazon SageMaker

D.

Send Amazon CloudWatch Logs that were generated by Amazon SageMaker lo Amazon ES and use Kibana to query and visualize the log data.

Full Access
Question # 93

A machine learning (ML) specialist wants to secure calls to the Amazon SageMaker Service API. The specialist has configured Amazon VPC with a VPC interface endpoint for the Amazon SageMaker Service API and is attempting to secure traffic from specific sets of instances and IAM users. The VPC is configured with a single public subnet.

Which combination of steps should the ML specialist take to secure the traffic? (Choose two.)

A.

Add a VPC endpoint policy to allow access to the IAM users.

B.

Modify the users' IAM policy to allow access to Amazon SageMaker Service API calls only.

C.

Modify the security group on the endpoint network interface to restrict access to the instances.

D.

Modify the ACL on the endpoint network interface to restrict access to the instances.

E.

Add a SageMaker Runtime VPC endpoint interface to the VPC.

Full Access
Question # 94

A manufacturing company has a large set of labeled historical sales data The manufacturer would like to predict how many units of a particular part should be produced each quarter Which machine learning approach should be used to solve this problem?

A.

Logistic regression

B.

Random Cut Forest (RCF)

C.

Principal component analysis (PCA)

D.

Linear regression

Full Access
Question # 95

A data science team is working with a tabular dataset that the team stores in Amazon S3. The team wants to experiment with different feature transformations such as categorical feature encoding. Then the team wants to visualize the resulting distribution of the dataset. After the team finds an appropriate set of feature transformations, the team wants to automate the workflow for feature transformations.

Which solution will meet these requirements with the MOST operational efficiency?

A.

Use Amazon SageMaker Data Wrangler preconfigured transformations to explore feature transformations. Use SageMaker Data Wrangler templates for visualization. Export the feature processing workflow to a SageMaker pipeline for automation.

B.

Use an Amazon SageMaker notebook instance to experiment with different feature transformations. Save the transformations to Amazon S3. Use Amazon QuickSight for visualization. Package the feature processing steps into an AWS Lambda function for automation.

C.

Use AWS Glue Studio with custom code to experiment with different feature transformations. Save the transformations to Amazon S3. Use Amazon QuickSight for visualization. Package the feature processing steps into an AWS Lambda function for automation.

D.

Use Amazon SageMaker Data Wrangler preconfigured transformations to experiment with different feature transformations. Save the transformations to Amazon S3. Use Amazon QuickSight for visualzation. Package each feature transformation step into a separate AWS Lambda function. Use AWS Step Functions for workflow automation.

Full Access
Question # 96

An Amazon SageMaker notebook instance is launched into Amazon VPC The SageMaker notebook references data contained in an Amazon S3 bucket in another account The bucket is encrypted using SSE-KMS The instance returns an access denied error when trying to access data in Amazon S3.

Which of the following are required to access the bucket and avoid the access denied error? (Select THREE)

A.

An AWS KMS key policy that allows access to the customer master key (CMK)

B.

A SageMaker notebook security group that allows access to Amazon S3

C.

An 1AM role that allows access to the specific S3 bucket

D.

A permissive S3 bucket policy

E.

An S3 bucket owner that matches the notebook owner

F.

A SegaMaker notebook subnet ACL that allow traffic to Amazon S3.

Full Access
Question # 97

A technology startup is using complex deep neural networks and GPU compute to recommend the company’s products to its existing customers based upon each customer’s habits and interactions. The solution currently pulls each dataset from an Amazon S3 bucket before loading the data into a TensorFlow model pulled from the company’s Git repository that runs locally. This job then runs for several hours while continually outputting its progress to the same S3 bucket. The job can be paused, restarted, and continued at any time in the event of a failure, and is run from a central queue.

Senior managers are concerned about the complexity of the solution’s resource management and the costs involved in repeating the process regularly. They ask for the workload to be automated so it runs once a week, starting Monday and completing by the close of business Friday.

Which architecture should be used to scale the solution at the lowest cost?

A.

Implement the solution using AWS Deep Learning Containers and run the container as a job using AWS Batch on a GPU-compatible Spot Instance

B.

Implement the solution using a low-cost GPU-compatible Amazon EC2 instance and use the AWS Instance Scheduler to schedule the task

C.

Implement the solution using AWS Deep Learning Containers, run the workload using AWS Fargate running on Spot Instances, and then schedule the task using the built-in task scheduler

D.

Implement the solution using Amazon ECS running on Spot Instances and schedule the task using the ECS service scheduler

Full Access