Summer Sale Special 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ex2p65

Exact2Pass Menu

Google Professional Machine Learning Engineer

Last Update 19 hours ago Total Questions : 285

The Google Professional Machine Learning Engineer content is now fully updated, with all current exam questions added 19 hours ago. Deciding to include Professional-Machine-Learning-Engineer practice exam questions in your study plan goes far beyond basic test preparation.

You'll find that our Professional-Machine-Learning-Engineer exam questions frequently feature detailed scenarios and practical problem-solving exercises that directly mirror industry challenges. Engaging with these Professional-Machine-Learning-Engineer sample sets allows you to effectively manage your time and pace yourself, giving you the ability to finish any Google Professional Machine Learning Engineer practice test comfortably within the allotted time.

Question # 4

Your data science team is training a PyTorch model for image classification based on a pre-trained RestNet model. You need to perform hyperparameter tuning to optimize for several parameters. What should you do?

A.

Convert the model to a Keras model, and run a Keras Tuner job.

B.

Run a hyperparameter tuning job on AI Platform using custom containers.

C.

Create a Kuberflow Pipelines instance, and run a hyperparameter tuning job on Katib.

D.

Convert the model to a TensorFlow model, and run a hyperparameter tuning job on AI Platform.

Question # 5

You have trained an XGBoost model that you plan to deploy on Vertex Al for online prediction. You are now uploading your model to Vertex Al Model Registry, and you need to configure the explanation method that will serve online prediction requests to be returned with minimal latency. You also want to be alerted when feature attributions of the model meaningfully change over time. What should you do?

A.

1 Specify sampled Shapley as the explanation method with a path count of 5.

2 Deploy the model to Vertex Al Endpoints.

3. Create a Model Monitoring job that uses prediction drift as the monitoring objective.

B.

1 Specify Integrated Gradients as the explanation method with a path count of 5.

2 Deploy the model to Vertex Al Endpoints.

3. Create a Model Monitoring job that uses prediction drift as the monitoring objective.

C.

1. Specify sampled Shapley as the explanation method with a path count of 50.

2. Deploy the model to Vertex Al Endpoints.

3. Create a Model Monitoring job that uses training-serving skew as the monitoring objective.

D.

1 Specify Integrated Gradients as the explanation method with a path count of 50.

2. Deploy the model to Vertex Al Endpoints.

3 Create a Model Monitoring job that uses training-serving skew as the monitoring objective.

Question # 6

You are building a MLOps platform to automate your company's ML experiments and model retraining. You need to organize the artifacts for dozens of pipelines How should you store the pipelines' artifacts'?

A.

Store parameters in Cloud SQL and store the models' source code and binaries in GitHub

B.

Store parameters in Cloud SQL store the models' source code in GitHub, and store the models' binaries in Cloud Storage.

C.

Store parameters in Vertex ML Metadata store the models' source code in GitHub and store the models' binaries in Cloud Storage.

D.

Store parameters in Vertex ML Metadata and store the models source code and binaries in GitHub.

Question # 7

You are building a predictive maintenance model to preemptively detect part defects in bridges. You plan to use high definition images of the bridges as model inputs. You need to explain the output of the model to the relevant stakeholders so they can take appropriate action. How should you build the model?

A.

Use scikit-learn to build a tree-based model, and use SHAP values to explain the model output.

B.

Use scikit-lean to build a tree-based model, and use partial dependence plots (PDP) to explain the model output.

C.

Use TensorFlow to create a deep learning-based model and use Integrated Gradients to explain the model

output.

D.

Use TensorFlow to create a deep learning-based model and use the sampled Shapley method to explain the model output.

Question # 8

You work at a bank. You need to develop a credit risk model to support loan application decisions You decide to implement the model by using a neural network in TensorFlow Due to regulatory requirements, you need to be able to explain the models predictions based on its features When the model is deployed, you also want to monitor the model's performance overtime You decided to use Vertex Al for both model development and deployment What should you do?

A.

Use Vertex Explainable Al with the sampled Shapley method, and enable Vertex Al Model Monitoring to

check for feature distribution drift.

B.

Use Vertex Explainable Al with the sampled Shapley method, and enable Vertex Al Model Monitoring to

check for feature distribution skew.

C.

Use Vertex Explainable Al with the XRAI method, and enable Vertex Al Model Monitoring to check for feature distribution drift.

D.

Use Vertex Explainable Al with the XRAI method and enable Vertex Al Model Monitoring to check for feature distribution skew.

Question # 9

You are collaborating on a model prototype with your team. You need to create a Vertex Al Workbench environment for the members of your team and also limit access to other employees in your project. What should you do?

A.

1. Create a new service account and grant it the Notebook Viewer role.

2 Grant the Service Account User role to each team member on the service account.

3 Grant the Vertex Al User role to each team member.

4. Provision a Vertex Al Workbench user-managed notebook instance that uses the new service account.

B.

1. Grant the Vertex Al User role to the default Compute Engine service account.

2. Grant the Service Account User role to each team member on the default Compute Engine service account.

3. Provision a Vertex Al Workbench user-managed notebook instance that uses the default Compute Engine service account.

C.

1 Create a new service account and grant it the Vertex Al User role.

2 Grant the Service Account User role to each team member on the service account.

3. Grant the Notebook Viewer role to each team member.

4 Provision a Vertex Al Workbench user-managed notebook instance that uses the new service account.

D.

1 Grant the Vertex Al User role to the primary team member.

2. Grant the Notebook Viewer role to the other team members.

3. Provision a Vertex Al Workbench user-managed notebook instance that uses the primary user’s account.

Question # 10

You work for a retail company that is using a regression model built with BigQuery ML to predict product sales. This model is being used to serve online predictions Recently you developed a new version of the model that uses a different architecture (custom model) Initial analysis revealed that both models are performing as expected You want to deploy the new version of the model to production and monitor the performance over the next two months You need to minimize the impact to the existing and future model users How should you deploy the model?

A.

Import the new model to the same Vertex Al Model Registry as a different version of the existing model. Deploy the new model to the same Vertex Al endpoint as the existing model, and use traffic splitting to route 95% of production traffic to the BigQuery ML model and 5% of production traffic to the new model.

B.

Import the new model to the same Vertex Al Model Registry as the existing model Deploy the models to one Vertex Al endpoint Route 95% of production traffic to the BigQuery ML model and 5% of production traffic to the new model

C.

Import the new model to the same Vertex Al Model Registry as the existing model Deploy each model to a separate Vertex Al endpoint.

D.

Deploy the new model to a separate Vertex Al endpoint Create a Cloud Run service that routes the prediction requests to the corresponding endpoints based on the input feature values.

Go to page: