Last Update 19 hours ago Total Questions : 285
The Google Professional Machine Learning Engineer content is now fully updated, with all current exam questions added 19 hours ago. Deciding to include Professional-Machine-Learning-Engineer practice exam questions in your study plan goes far beyond basic test preparation.
You'll find that our Professional-Machine-Learning-Engineer exam questions frequently feature detailed scenarios and practical problem-solving exercises that directly mirror industry challenges. Engaging with these Professional-Machine-Learning-Engineer sample sets allows you to effectively manage your time and pace yourself, giving you the ability to finish any Google Professional Machine Learning Engineer practice test comfortably within the allotted time.
Your data science team is training a PyTorch model for image classification based on a pre-trained RestNet model. You need to perform hyperparameter tuning to optimize for several parameters. What should you do?
You have trained an XGBoost model that you plan to deploy on Vertex Al for online prediction. You are now uploading your model to Vertex Al Model Registry, and you need to configure the explanation method that will serve online prediction requests to be returned with minimal latency. You also want to be alerted when feature attributions of the model meaningfully change over time. What should you do?
You are building a MLOps platform to automate your company's ML experiments and model retraining. You need to organize the artifacts for dozens of pipelines How should you store the pipelines' artifacts'?
You are building a predictive maintenance model to preemptively detect part defects in bridges. You plan to use high definition images of the bridges as model inputs. You need to explain the output of the model to the relevant stakeholders so they can take appropriate action. How should you build the model?
You work at a bank. You need to develop a credit risk model to support loan application decisions You decide to implement the model by using a neural network in TensorFlow Due to regulatory requirements, you need to be able to explain the models predictions based on its features When the model is deployed, you also want to monitor the model's performance overtime You decided to use Vertex Al for both model development and deployment What should you do?
You are collaborating on a model prototype with your team. You need to create a Vertex Al Workbench environment for the members of your team and also limit access to other employees in your project. What should you do?
You work for a retail company that is using a regression model built with BigQuery ML to predict product sales. This model is being used to serve online predictions Recently you developed a new version of the model that uses a different architecture (custom model) Initial analysis revealed that both models are performing as expected You want to deploy the new version of the model to production and monitor the performance over the next two months You need to minimize the impact to the existing and future model users How should you deploy the model?