Winter Sale 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ex2p65

Exact2Pass Menu

AWS Certified Machine Learning Engineer - Associate

Last Update 2 hours ago Total Questions : 207

The AWS Certified Machine Learning Engineer - Associate content is now fully updated, with all current exam questions added 2 hours ago. Deciding to include MLA-C01 practice exam questions in your study plan goes far beyond basic test preparation.

You'll find that our MLA-C01 exam questions frequently feature detailed scenarios and practical problem-solving exercises that directly mirror industry challenges. Engaging with these MLA-C01 sample sets allows you to effectively manage your time and pace yourself, giving you the ability to finish any AWS Certified Machine Learning Engineer - Associate practice test comfortably within the allotted time.

Question # 4

A company regularly receives new training data from a vendor of an ML model. The vendor delivers cleaned and prepared data to the company’s Amazon S3 bucket every 3–4 days.

The company has an Amazon SageMaker AI pipeline to retrain the model. An ML engineer needs to run the pipeline automatically when new data is uploaded to the S3 bucket.

Which solution will meet these requirements with the LEAST operational effort?

A.

Create an S3 lifecycle rule to transfer the data to the SageMaker AI training instance and initiate training.

B.

Create an AWS Lambda function that scans the S3 bucket and initiates the pipeline when new data is uploaded.

C.

Create an Amazon EventBridge rule that matches S3 upload events and configures the SageMaker pipeline as the target.

D.

Use Amazon Managed Workflows for Apache Airflow (MWAA) to orchestrate the pipeline when new data is uploaded.

Question # 5

An ML engineer is using an Amazon SageMaker AI shadow test to evaluate a new model that is hosted on a SageMaker AI endpoint. The shadow test requires significant GPU resources for high performance. The production variant currently runs on a less powerful instance type.

The ML engineer needs to configure the shadow test to use a higher performance instance type for a shadow variant. The solution must not affect the instance type of the production variant.

Which solution will meet these requirements?

A.

Modify the existing ProductionVariant configuration in the endpoint to include a ShadowProductionVariants list. Specify the larger instance type for the shadow variant.

B.

Create a new endpoint configuration with two ProductionVariant definitions. Configure one definition for the existing production variant and one definition for the shadow variant with the larger instance type. Use the UpdateEndpoint action to apply the new configuration.

C.

Create a separate SageMaker AI endpoint for the shadow variant that uses the larger instance type. Create an AWS Lambda function that routes a portion of the traffic to the shadow endpoint. Assign the Lambda function to the original endpoint.

D.

Use the CreateEndpointConfig action to define a new configuration. Specify the existing production variant in the configuration and add a separate ShadowProductionVariants list. Specify the larger instance type for the shadow variant. Use the CreateEndpoint action and pass the new configuration to the endpoint.

Question # 6

A company uses an ML model to recommend videos to users. The model is deployed on Amazon SageMaker AI. The model performed well initially after deployment, but the model's performance has degraded over time.

Which solution can the company use to identify model drift in the future?

A.

Create a monitoring job in SageMaker Model Monitor. Then create a baseline from the training dataset.

B.

Create a baseline from the training dataset. Then create a monitoring job in SageMaker Model Monitor.

C.

Create a baseline by using a built-in rule in SageMaker Clarify. Monitor the drift in Amazon CloudWatch.

D.

Retrain the model on new data. Compare the retrained model's performance to the original model's performance.

Question # 7

An ML engineer develops a neural network model to predict whether customers will continue to subscribe to a service. The model performs well on training data. However, the accuracy of the model decreases significantly on evaluation data.

The ML engineer must resolve the model performance issue.

Which solution will meet this requirement?

A.

Penalize large weights by using L1 or L2 regularization.

B.

Remove dropout layers from the neural network.

C.

Train the model for longer by increasing the number of epochs.

D.

Capture complex patterns by increasing the number of layers.

Question # 8

A company wants to develop an ML model by using tabular data from its customers. The data contains meaningful ordered features with sensitive information that should not be discarded. An ML engineer must ensure that the sensitive data is masked before another team starts to build the model.

Which solution will meet these requirements?

A.

Use Amazon Made to categorize the sensitive data.

B.

Prepare the data by using AWS Glue DataBrew.

C.

Run an AWS Batch job to change the sensitive data to random values.

D.

Run an Amazon EMR job to change the sensitive data to random values.

Question # 9

A company is creating an application that will recommend products for customers to purchase. The application will make API calls to Amazon Q Business. The company must ensure that responses from Amazon Q Business do not include the name of the company's main competitor.

Which solution will meet this requirement?

A.

Configure the competitor's name as a blocked phrase in Amazon Q Business.

B.

Configure an Amazon Q Business retriever to exclude the competitor’s name.

C.

Configure an Amazon Kendra retriever for Amazon Q Business to build indexes that exclude the competitor's name.

D.

Configure document attribute boosting in Amazon Q Business to deprioritize the competitor's name.

Question # 10

Case Study

A company is building a web-based AI application by using Amazon SageMaker. The application will provide the following capabilities and features: ML experimentation, training, a

central model registry, model deployment, and model monitoring.

The application must ensure secure and isolated use of training data during the ML lifecycle. The training data is stored in Amazon S3.

The company must implement a manual approval-based workflow to ensure that only approved models can be deployed to production endpoints.

Which solution will meet this requirement?

A.

Use SageMaker Experiments to facilitate the approval process during model registration.

B.

Use SageMaker ML Lineage Tracking on the central model registry. Create tracking entities for the approval process.

C.

Use SageMaker Model Monitor to evaluate the performance of the model and to manage the approval.

D.

Use SageMaker Pipelines. When a model version is registered, use the AWS SDK to change the approval status to "Approved."

Go to page: