When running a pipeline that has a BigQuery source, on your local machine, you continue to get permission denied errors. What could be the reason for that?
Which of the following are examples of hyperparameters? (Select 2 answers.)
Which row keys are likely to cause a disproportionate number of reads and/or writes on a particular node in a Bigtable cluster (select 2 answers)?
You are planning to use Google's Dataflow SDK to analyze customer data such as displayed below. Your project requirement is to extract only the customer name from the data source and then write to an output PCollection.
Tom,555 X street
Tim,553 Y street
Sam, 111 Z street
Which operation is best suited for the above data processing requirement?
You have a job that you want to cancel. It is a streaming pipeline, and you want to ensure that any data that is in-flight is processed and written to the output. Which of the following commands can you use on the Dataflow monitoring console to stop the pipeline job?
If you want to create a machine learning model that predicts the price of a particular stock based on its recent price history, what type of estimator should you use?
Your business users need a way to clean and prepare data before using the data for analysis. Your business users are less technically savvy and prefer to work with graphical user interfaces to define their transformations. After the data has been transformed, the business users want to perform their analysis directly in a spreadsheet. You need to recommend a solution that they can use. What should you do?
Which SQL keyword can be used to reduce the number of columns processed by BigQuery?
The YARN ResourceManager and the HDFS NameNode interfaces are available on a Cloud Dataproc cluster ____.
Which methods can be used to reduce the number of rows processed by BigQuery?
Which TensorFlow function can you use to configure a categorical column if you don't know all of the possible values for that column?
If a dataset contains rows with individual people and columns for year of birth, country, and income, how many of the columns are continuous and how many are categorical?
Which of the following IAM roles does your Compute Engine account require to be able to run pipeline jobs?
In order to securely transfer web traffic data from your computer's web browser to the Cloud Dataproc cluster you should use a(n) _____.
You are working on a sensitive project involving private user data. You have set up a project on Google Cloud Platform to house your work internally. An external consultant is going to assist with coding a complex transformation in a Google Cloud Dataflow pipeline for your project. How should you maintain users’ privacy?
If you're running a performance test that depends upon Cloud Bigtable, all the choices except one below are recommended steps. Which is NOT a recommended step to follow?
An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?
Your company is using WHILECARD tables to query data across multiple tables with similar names. The SQL statement is currently failing with the following error:
# Syntax error : Expected end of statement but got “-“ at [4:11]
SELECT age
FROM
bigquery-public-data.noaa_gsod.gsod
WHERE
age != 99
AND_TABLE_SUFFIX = ‘1929’
ORDER BY
age DESC
Which table name will make the SQL statement work correctly?
Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?
You are creating a model to predict housing prices. Due to budget constraints, you must run it on a single resource-constrained virtual machine. Which learning algorithm should you use?
You want to process payment transactions in a point-of-sale application that will run on Google Cloud Platform. Your user base could grow exponentially, but you do not want to manage infrastructure scaling.
Which Google database service should you use?
You have spent a few days loading data from comma-separated values (CSV) files into the Google BigQuery table CLICK_STREAM. The column DT stores the epoch time of click events. For convenience, you chose a simple schema where every field is treated as the STRING type. Now, you want to compute web session durations of users who visit your site, and you want to change its data type to the TIMESTAMP. You want to minimize the migration effort without making future queries computationally expensive. What should you do?
You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?
Your company is migrating their 30-node Apache Hadoop cluster to the cloud. They want to re-use Hadoop jobs they have already created and minimize the management of the cluster as much as possible. They also want to be able to persist data beyond the life of the cluster. What should you do?
Your company is performing data preprocessing for a learning algorithm in Google Cloud Dataflow. Numerous data logs are being are being generated during this step, and the team wants to analyze them. Due to the dynamic nature of the campaign, the data is growing exponentially every hour.
The data scientists have written the following code to read the data for a new key features in the logs.
BigQueryIO.Read
.named(“ReadLogData”)
.from(“clouddataflow-readonly:samples.log_data”)
You want to improve the performance of this data read. What should you do?
You are building a model to make clothing recommendations. You know a user’s fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available. How should you use this data to train the model?
You are designing a basket abandonment system for an ecommerce company. The system will send a message to a user based on these rules:
No interaction by the user on the site for 1 hour
Has added more than $30 worth of products to the basket
Has not completed a transaction
You use Google Cloud Dataflow to process the data and decide if a message should be sent. How should you design the pipeline?
You designed a database for patient records as a pilot project to cover a few hundred patients in three clinics. Your design used a single database table to represent all patients and their visits, and you used self-joins to generate reports. The server resource utilization was at 50%. Since then, the scope of the project has expanded. The database must now store 100 times more patientrecords. You can no longer run the reports, because they either take too long or they encounter errors with insufficient compute resources. How should you adjust the database design?
You need to compose visualization for operations teams with the following requirements:
Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)
The report must not be more than 3 hours delayed from live data.
The actionable report should only show suboptimal links.
Most suboptimal links should be sorted to the top.
Suboptimal links can be grouped and filtered by regional geography.
User response time to load the report must be <5 seconds.
You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?
You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.
Which two actions should you take? (Choose two.)
You have two projects where you run BigQuery jobs:
• One project runs production jobs that have strict completion time SLAs. These are high priority jobs that must have the required compute resources available when needed. These jobs generally never go below a 300 slot utilization, but occasionally spike up an additional 500 slots.
• The other project is for users to run ad-hoc analytical queries. This project generally never uses more than 200 slots at a time. You want these ad-hoc queries to be billed based on how much data users scan rather than by slot capacity.
You need to ensure that both projects have the appropriate compute resources available. What should you do?
Your weather app queries a database every 15 minutes to get the current temperature. The frontend is powered by Google App Engine and server millions of users. How should you design the frontend to respond to a database failure?
You want to use a database of information about tissue samples to classify future tissue samples as either normal or mutated. You are evaluating an unsupervised anomaly detection method for classifying the tissue samples. Which two characteristic support this method? (Choose two.)
You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?
MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?
Your startup has never implemented a formal security policy. Currently, everyone in the company has access to the datasets stored in Google BigQuery. Teams have freedom to use the service as they see fit, and they have not documented their use cases. You have been asked to secure the data warehouse. You need to discover what everyone is doing. What should you do first?
You need to compose visualizations for operations teams with the following requirements:
Which approach meets the requirements?
Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?
Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?
Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.
You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)
Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?
MJTelco is building a custom interface to share data. They have these requirements:
They need to do aggregations over their petabyte-scale datasets.
They need to scan specific time range rows with a very fast response time (milliseconds).
Which combination of Google Cloud Platform products should you recommend?
You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:
The user profile: What the user likes and doesn’t like to eat
The user account information: Name, address, preferred meal times
The order information: When orders are made, from where, to whom
The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?
You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?
You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?
You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?
You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.
You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)
You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor=
Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.
Which approach should you take?
Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?
Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?
Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?
You need to choose a database for a new project that has the following requirements:
Fully managed
Able to automatically scale up
Transactionally consistent
Able to scale up to 6 TB
Able to be queried using SQL
Which database do you choose?
You are migrating your data warehouse to Google Cloud and decommissioning your on-premises data center Because this is a priority for your company, you know that bandwidth will be made available for the initial data load to the cloud. The files being transferred are not large in number, but each file is 90 GB Additionally, you want your transactional systems to continually update the warehouse on Google Cloud in real time What tools should you use to migrate the data and ensure that it continues to write to your warehouse?
You want to migrate an on-premises Hadoop system to Cloud Dataproc. Hive is the primary tool in use, and the data format is Optimized Row Columnar (ORC). All ORC files have been successfully copied to a Cloud Storage bucket. You need to replicate some data to the cluster’s local Hadoop Distributed File System (HDFS) to maximize performance. What are two ways to start using Hive in Cloud Dataproc? (Choose two.)
You launched a new gaming app almost three years ago. You have been uploading log files from the previous day to a separate Google BigQuery table with the table name format LOGS_yyyymmdd. You have been using table wildcard functions to generate daily and monthly reports for all time ranges. Recently, you discovered that some queries that cover long date ranges are exceeding the limit of 1,000 tables and failing. How can you resolve this issue?
You currently have transactional data stored on-premises in a PostgreSQL database. To modernize your data environment, you want to run transactional workloads and support analytics needs with a single database. You need to move to Google Cloud without changing database management systems, and minimize cost and complexity. What should you do?
You have thousands of Apache Spark jobs running in your on-premises Apache Hadoop cluster. You want to migrate the jobs to Google Cloud. You want to use managed services to run your jobs instead of maintaining a long-lived Hadoop cluster yourself. You have a tight timeline and want to keep code changes to a minimum. What should you do?
You are designing a cloud-native historical data processing system to meet the following conditions:
The data being analyzed is in CSV, Avro, and PDF formats and will be accessed by multiple analysis tools including Cloud Dataproc, BigQuery, and Compute Engine.
A streaming data pipeline stores new data daily.
Peformance is not a factor in the solution.
The solution design should maximize availability.
How should you design data storage for this solution?
Your team is building a data lake platform on Google Cloud. As a part of the data foundation design, you are planning to store all the raw data in Cloud Storage You are expecting to ingest approximately 25 GB of data a day and your billing department is worried about the increasing cost of storing old data. The current business requirements are:
• The old data can be deleted anytime
• You plan to use the visualization layer for current and historical reporting
• The old data should be available instantly when accessed
• There should not be any charges for data retrieval.
What should you do to optimize for cost?
You currently have a single on-premises Kafka cluster in a data center in the us-east region that is responsible for ingesting messages from IoT devices globally. Because large parts of globe have poor internet connectivity, messages sometimes batch at the edge, come in all at once, and cause a spike in load on your Kafka cluster. This is becoming difficult to manage and prohibitively expensive. What is the Google-recommended cloud native architecture for this scenario?
You have enabled the free integration between Firebase Analytics and Google BigQuery. Firebase now
automatically creates a new table daily in BigQuery in the format app_events_YYYYMMDD. You want to
query all of the tables for the past 30 days in legacy SQL. What should you do?
You are designing a real-time system for a ride hailing app that identifies areas with high demand for rides to effectively reroute available drivers to meet the demand. The system ingests data from multiple sources to Pub/Sub. processes the data, and stores the results for visualization and analysis in real-time dashboards. The data sources include driver location updates every 5 seconds and app-based booking events from riders. The data processing involves real-time aggregation of supply and demand data for the last 30 seconds, every 2 seconds, and storing the results in a low-latency system for visualization. What should you do?
An aerospace company uses a proprietary data format to store its night data. You need to connect this new data source to BigQuery and stream the data into BigQuery. You want to efficiency import the data into BigQuery where consuming as few resources as possible. What should you do?
You want to archive data in Cloud Storage. Because some data is very sensitive, you want to use the “Trust No One” (TNO) approach to encrypt your data to prevent the cloud provider staff from decrypting your data. What should you do?
You are administering a BigQuery on-demand environment. Your business intelligence tool is submitting hundreds of queries each day that aggregate a large (50 TB) sales history fact table at the day and month levels. These queries have a slow response time and are exceeding cost expectations. You need to decrease response time, lower query costs, and minimize maintenance. What should you do?
You are creating the CI'CD cycle for the code of the directed acyclic graphs (DAGs) running in Cloud Composer. Your team has two Cloud Composer instances: one instance for development and another instance for production. Your team is using a Git repository to maintain and develop the code of the DAGs. You want to deploy the DAGs automatically to Cloud Composer when a certain tag is pushed to the Git repository. What should you do?
You work on a regression problem in a natural language processing domain, and you have 100M labeled exmaples in your dataset. You have randomly shuffled your data and split your dataset into train and test samples (in a 90/10 ratio). After you trained the neural network and evaluatedyour model on a test set, you discover that the root-mean-squared error (RMSE) of your model is twice as high on the train set as on the test set. How should you improve the performance of your model?
You are managing a Cloud Dataproc cluster. You need to make a job run faster while minimizing costs, without losing work in progress on your clusters. What should you do?