Pre-Winter Sale Special 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ex2p65

Exact2Pass Menu

Question # 4

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Full Access
Question # 5

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Full Access
Question # 6

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Full Access
Question # 7

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Full Access
Question # 8

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Full Access
Question # 9

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Full Access
Question # 10

MJTelco is building a custom interface to share data. They have these requirements:

    They need to do aggregations over their petabyte-scale datasets.

    They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Full Access
Question # 11

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Full Access
Question # 12

You need to compose visualization for operations teams with the following requirements:

    Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

    The report must not be more than 3 hours delayed from live data.

    The actionable report should only show suboptimal links.

    Most suboptimal links should be sorted to the top.

    Suboptimal links can be grouped and filtered by regional geography.

    User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

A.

Look through the current data and compose a series of charts and tables, one for each possible

combination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possible

combination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Full Access
Question # 13

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Full Access
Question # 14

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all the data in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Full Access
Question # 15

You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying data. Which query type should you use?

A.

Include ORDER BY DESK on timestamp column and LIMIT to 1.

B.

Use GROUP BY on the unique ID column and timestamp column and SUM on the values.

C.

Use the LAG window function with PARTITION by unique ID along with WHERE LAG IS NOT NULL.

D.

Use the ROW_NUMBER window function with PARTITION by unique ID along with WHERE row equals 1.

Full Access
Question # 16

Your software uses a simple JSON format for all messages. These messages are published to Google Cloud Pub/Sub, then processed with Google Cloud Dataflow to create a real-time dashboard for the CFO. During testing, you notice that some messages are missing in the dashboard. You check the logs, and all messages are being published to Cloud Pub/Sub successfully. What should you do next?

A.

Check the dashboard application to see if it is not displaying correctly.

B.

Run a fixed dataset through the Cloud Dataflow pipeline and analyze the output.

C.

Use Google Stackdriver Monitoring on Cloud Pub/Sub to find the missing messages.

D.

Switch Cloud Dataflow to pull messages from Cloud Pub/Sub instead of Cloud Pub/Sub pushing messages to Cloud Dataflow.

Full Access
Question # 17

Your company has hired a new data scientist who wants to perform complicated analyses across very large datasets stored in Google Cloud Storage and in a Cassandra cluster on Google Compute Engine. The scientist primarily wants to create labelled data sets for machine learning projects, along with some visualization tasks. She reports that her laptop is not powerful enough to perform her tasks and it is slowing her down. You want to help her perform her tasks. What should you do?

A.

Run a local version of Jupiter on the laptop.

B.

Grant the user access to Google Cloud Shell.

C.

Host a visualization tool on a VM on Google Compute Engine.

D.

Deploy Google Cloud Datalab to a virtual machine (VM) on Google Compute Engine.

Full Access
Question # 18

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Full Access
Question # 19

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Full Access
Question # 20

You want to use a database of information about tissue samples to classify future tissue samples as either normal or mutated. You are evaluating an unsupervised anomaly detection method for classifying the tissue samples. Which two characteristic support this method? (Choose two.)

A.

There are very few occurrences of mutations relative to normal samples.

B.

There are roughly equal occurrences of both normal and mutated samples in the database.

C.

You expect future mutations to have different features from the mutated samples in the database.

D.

You expect future mutations to have similar features to the mutated samples in the database.

E.

You already have labels for which samples are mutated and which are normal in the database.

Full Access
Question # 21

Your weather app queries a database every 15 minutes to get the current temperature. The frontend is powered by Google App Engine and server millions of users. How should you design the frontend to respond to a database failure?

A.

Issue a command to restart the database servers.

B.

Retry the query with exponential backoff, up to a cap of 15 minutes.

C.

Retry the query every second until it comes back online to minimize staleness of data.

D.

Reduce the query frequency to once every hour until the database comes back online.

Full Access
Question # 22

Your company is migrating their 30-node Apache Hadoop cluster to the cloud. They want to re-use Hadoop jobs they have already created and minimize the management of the cluster as much as possible. They also want to be able to persist data beyond the life of the cluster. What should you do?

A.

Create a Google Cloud Dataflow job to process the data.

B.

Create a Google Cloud Dataproc cluster that uses persistent disks for HDFS.

C.

Create a Hadoop cluster on Google Compute Engine that uses persistent disks.

D.

Create a Cloud Dataproc cluster that uses the Google Cloud Storage connector.

E.

Create a Hadoop cluster on Google Compute Engine that uses Local SSD disks.

Full Access
Question # 23

You are architecting a data transformation solution for BigQuery. Your developers are proficient with SOL and want to use the ELT development technique. In addition, your developers need an intuitive coding environment and the ability to manage SQL as code. You need to identify a solution for your developers to build these pipelines. What should you do?

A.

Use Cloud Composer to load data and run SQL pipelines by using the BigQuery job operators.

B.

Use Dataflow jobs to read data from Pub/Sub, transform the data, and load the data to BigQuery.

C.

Use Dataform to build, manage, and schedule SQL pipelines.

D.

Use Data Fusion to build and execute ETL pipelines

Full Access
Question # 24

You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?

A.

Re-write the application to load accumulated data every 2 minutes.

B.

Convert the streaming insert code to batch load for individual messages.

C.

Load the original message to Google Cloud SQL, and export the table every hour to BigQuery via streaming inserts.

D.

Estimate the average latency for data availability after streaming inserts, and always run queries after waiting twice as long.

Full Access
Question # 25

You create an important report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. You notice that visualizations are not showing data that is less than 1 hour old. What should you do?

A.

Disable caching by editing the report settings.

B.

Disable caching in BigQuery by editing table details.

C.

Refresh your browser tab showing the visualizations.

D.

Clear your browser history for the past hour then reload the tab showing the virtualizations.

Full Access
Question # 26

You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?

A.

Make a call to the Stackdriver API to list all logs, and apply an advanced filter.

B.

In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.

C.

In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.

D.

Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.

Full Access
Question # 27

You are working on a sensitive project involving private user data. You have set up a project on Google Cloud Platform to house your work internally. An external consultant is going to assist with coding a complex transformation in a Google Cloud Dataflow pipeline for your project. How should you maintain users’ privacy?

A.

Grant the consultant the Viewer role on the project.

B.

Grant the consultant the Cloud Dataflow Developer role on the project.

C.

Create a service account and allow the consultant to log on with it.

D.

Create an anonymized sample of the data for the consultant to work with in a different project.

Full Access
Question # 28

You designed a database for patient records as a pilot project to cover a few hundred patients in three clinics. Your design used a single database table to represent all patients and their visits, and you used self-joins to generate reports. The server resource utilization was at 50%. Since then, the scope of the project has expanded. The database must now store 100 times more patient records. You can no longer run the reports, because they either take too long or they encounter errors with insufficient compute resources. How should you adjust the database design?

A.

Add capacity (memory and disk space) to the database server by the order of 200.

B.

Shard the tables into smaller ones based on date ranges, and only generate reports with prespecified date ranges.

C.

Normalize the master patient-record table into the patient table and the visits table, and create other necessary tables to avoid self-join.

D.

Partition the table into smaller tables, with one for each clinic. Run queries against the smaller table pairs, and use unions for consolidated reports.

Full Access
Question # 29

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

A.

Use federated data sources, and check data in the SQL query.

B.

Enable BigQuery monitoring in Google Stackdriver and create an alert.

C.

Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.

D.

Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Full Access
Question # 30

Your company is using WHILECARD tables to query data across multiple tables with similar names. The SQL statement is currently failing with the following error:

# Syntax error : Expected end of statement but got “-“ at [4:11]

SELECT age

FROM

bigquery-public-data.noaa_gsod.gsod

WHERE

age != 99

AND_TABLE_SUFFIX = ‘1929’

ORDER BY

age DESC

Which table name will make the SQL statement work correctly?

A.

‘bigquery-public-data.noaa_gsod.gsod‘

B.

bigquery-public-data.noaa_gsod.gsod*

C.

‘bigquery-public-data.noaa_gsod.gsod’*

D.

‘bigquery-public-data.noaa_gsod.gsod*`

Full Access
Question # 31

Business owners at your company have given you a database of bank transactions. Each row contains the user ID, transaction type, transaction location, and transaction amount. They ask you to investigate what type of machine learning can be applied to the data. Which three machine learning applications can you use? (Choose three.)

A.

Supervised learning to determine which transactions are most likely to be fraudulent.

B.

Unsupervised learning to determine which transactions are most likely to be fraudulent.

C.

Clustering to divide the transactions into N categories based on feature similarity.

D.

Supervised learning to predict the location of a transaction.

E.

Reinforcement learning to predict the location of a transaction.

F.

Unsupervised learning to predict the location of a transaction.

Full Access
Question # 32

You are developing an application that uses a recommendation engine on Google Cloud. Your solution should display new videos to customers based on past views. Your solution needs to generate labels for the entities in videos that the customer has viewed. Your design must be able to provide very fast filtering suggestions based on data from other customer preferences on several TB of data. What should you do?

A.

Build and train a complex classification model with Spark MLlib to generate labels and filter the results.

Deploy the models using Cloud Dataproc. Call the model from your application.

B.

Build and train a classification model with Spark MLlib to generate labels. Build and train a second

classification model with Spark MLlib to filter results to match customer preferences. Deploy the models

using Cloud Dataproc. Call the models from your application.

C.

Build an application that calls the Cloud Video Intelligence API to generate labels. Store data in Cloud

Bigtable, and filter the predicted labels to match the user’s viewing history to generate preferences.

D.

Build an application that calls the Cloud Video Intelligence API to generate labels. Store data in Cloud

SQL, and join and filter the predicted labels to match the user’s viewing history to generate preferences.

Full Access
Question # 33

You store and analyze your relational data in BigQuery on Google Cloud with all data that resides in US regions. You also have a variety of object stores across Microsoft Azure and Amazon Web Services (AWS), also in US regions. You want to query all your data in BigQuery daily with as little movement of data as possible. What should you do?

A.

Load files from AWS and Azure to Cloud Storage with Cloud Shell gautil rsync arguments.

B.

Create a Dataflow pipeline to ingest files from Azure and AWS to BigQuery.

C.

Use the BigQuery Omni functionality and BigLake tables to query files in Azure and AWS.

D.

Use BigQuery Data Transfer Service to load files from Azure and AWS into BigQuery.

Full Access
Question # 34

You have developed three data processing jobs. One executes a Cloud Dataflow pipeline that transforms data uploaded to Cloud Storage and writes results to BigQuery. The second ingests data from on-premises servers and uploads it to Cloud Storage. The third is a Cloud Dataflow pipeline that gets information from third-party data providers and uploads the information to Cloud Storage. You need to be able to schedule and monitor the execution of these three workflows and manually execute them when needed. What should you do?

A.

Create a Direct Acyclic Graph in Cloud Composer to schedule and monitor the jobs.

B.

Use Stackdriver Monitoring and set up an alert with a Webhook notification to trigger the jobs.

C.

Develop an App Engine application to schedule and request the status of the jobs using GCP API calls.

D.

Set up cron jobs in a Compute Engine instance to schedule and monitor the pipelines using GCP API calls.

Full Access
Question # 35

An organization maintains a Google BigQuery dataset that contains tables with user-level datA. They want to expose aggregates of this data to other Google Cloud projects, while still controlling access to the user-level data. Additionally, they need to minimize their overall storage cost and ensure the analysis cost for other projects is assigned to those projects. What should they do?

A.

Create and share an authorized view that provides the aggregate results.

B.

Create and share a new dataset and view that provides the aggregate results.

C.

Create and share a new dataset and table that contains the aggregate results.

D.

Create dataViewer Identity and Access Management (IAM) roles on the dataset to enable sharing.

Full Access
Question # 36

You need to move 2 PB of historical data from an on-premises storage appliance to Cloud Storage within six months, and your outbound network capacity is constrained to 20 Mb/sec. How should you migrate this data to Cloud Storage?

A.

Use Transfer Appliance to copy the data to Cloud Storage

B.

Use gsutil cp –J to compress the content being uploaded to Cloud Storage

C.

Create a private URL for the historical data, and then use Storage Transfer Service to copy the data to Cloud Storage

D.

Use trickle or ionice along with gsutil cp to limit the amount of bandwidth gsutil utilizes to less than 20 Mb/sec so it does not interfere with the production traffic

Full Access
Question # 37

You need to migrate a 2TB relational database to Google Cloud Platform. You do not have the resources to significantly refactor the application that uses this database and cost to operate is of primary concern.

Which service do you select for storing and serving your data?

A.

Cloud Spanner

B.

Cloud Bigtable

C.

Cloud Firestore

D.

Cloud SQL

Full Access
Question # 38

You are building a streaming Dataflow pipeline that ingests noise level data from hundreds of sensors placed near construction sites across a city. The sensors measure noise level every ten seconds, and send that data to the pipeline when levels reach above 70 dBA. You need to detect the average noise level from a sensor when data is received for a duration of more than 30 minutes, but the window ends when no data has been received for 15 minutes What should you do?

A.

Use session windows with a 30-mmute gap duration.

B.

Use tumbling windows with a 15-mmute window and a fifteen-minute. withAllowedLateness operator.

C.

Use session windows with a 15-minute gap duration.

D.

Use hopping windows with a 15-mmute window, and a thirty-minute period.

Full Access
Question # 39

Your infrastructure team has set up an interconnect link between Google Cloud and the on-premises network. You are designing a high-throughput streaming pipeline to ingest data in streaming from an Apache Kafka cluster hosted on-premises. You want to store the data in BigQuery, with as minima! latency as possible. What should you do?

A.

Use a proxy host in the VPC in Google Cloud connecting to Kafka. Write a Dataflow pipeline, read data from the proxy host, and write the data to BigQuery.

B.

Setup a Kafka Connect bridge between Kafka and Pub/Sub. Use a Google-provided Dataflow template to read the data from Pub/Sub, and write the data to BigQuery.

C.

Setup a Kafka Connect bridge between Kafka and Pub/Sub. Write a Dataflow pipeline, read the data from Pub/Sub, and write the data to

BigQuery.

D.

Use Dataflow, write a pipeline that reads the data from Kafka, and writes the data to BigQuery.

Full Access
Question # 40

You are responsible for writing your company’s ETL pipelines to run on an Apache Hadoop cluster. The

pipeline will require some checkpointing and splitting pipelines. Which method should you use to write the

pipelines?

A.

PigLatin using Pig

B.

HiveQL using Hive

C.

Java using MapReduce

D.

Python using MapReduce

Full Access
Question # 41

You want to analyze hundreds of thousands of social media posts daily at the lowest cost and with the fewest steps.

You have the following requirements:

    You will batch-load the posts once per day and run them through the Cloud Natural Language API.

    You will extract topics and sentiment from the posts.

    You must store the raw posts for archiving and reprocessing.

    You will create dashboards to be shared with people both inside and outside your organization.

You need to store both the data extracted from the API to perform analysis as well as the raw social media posts for historical archiving. What should you do?

A.

Store the social media posts and the data extracted from the API in BigQuery.

B.

Store the social media posts and the data extracted from the API in Cloud SQL.

C.

Store the raw social media posts in Cloud Storage, and write the data extracted from the API into BigQuery.

D.

Feed to social media posts into the API directly from the source, and write the extracted data from the API into BigQuery.

Full Access
Question # 42

You use a dataset in BigQuery for analysis. You want to provide third-party companies with access to the same dataset. You need to keep the costs of data sharing low and ensure that the data is current. Which solution should you choose?

A.

Create an authorized view on the BigQuery table to control data access, and provide third-party companies with access to that view.

B.

Use Cloud Scheduler to export the data on a regular basis to Cloud Storage, and provide third-party companies with access to the bucket.

C.

Create a separate dataset in BigQuery that contains the relevant data to share, and provide third-party companies with access to the new dataset.

D.

Create a Cloud Dataflow job that reads the data in frequent time intervals, and writes it to the relevant BigQuery dataset or Cloud Storage bucket for third-party companies to use.

Full Access
Question # 43

You are designing a data processing pipeline. The pipeline must be able to scale automatically as load increases. Messages must be processed at least once, and must be ordered within windows of 1 hour. How should you design the solution?

A.

Use Apache Kafka for message ingestion and use Cloud Dataproc for streaming analysis.

B.

Use Apache Kafka for message ingestion and use Cloud Dataflow for streaming analysis.

C.

Use Cloud Pub/Sub for message ingestion and Cloud Dataproc for streaming analysis.

D.

Use Cloud Pub/Sub for message ingestion and Cloud Dataflow for streaming analysis.

Full Access
Question # 44

Your company is implementing a data warehouse using BigQuery, and you have been tasked with designing the data model You move your on-premises sales data warehouse with a star data schema to BigQuery but notice performance issues when querying the data of the past 30 days Based on Google's recommended practices, what should you do to speed up the query without increasing storage costs?

A.

Denormalize the data

B.

Shard the data by customer ID

C.

Materialize the dimensional data in views

D.

Partition the data by transaction date

Full Access
Question # 45

Which Google Cloud Platform service is an alternative to Hadoop with Hive?

A.

Cloud Dataflow

B.

Cloud Bigtable

C.

BigQuery

D.

Cloud Datastore

Full Access
Question # 46

You are managing a Cloud Dataproc cluster. You need to make a job run faster while minimizing costs, without losing work in progress on your clusters. What should you do?

A.

Increase the cluster size with more non-preemptible workers.

B.

Increase the cluster size with preemptible worker nodes, and configure them to forcefully decommission.

C.

Increase the cluster size with preemptible worker nodes, and use Cloud Stackdriver to trigger a script to preserve work.

D.

Increase the cluster size with preemptible worker nodes, and configure them to use graceful decommissioning.

Full Access
Question # 47

Which of these statements about exporting data from BigQuery is false?

A.

To export more than 1 GB of data, you need to put a wildcard in the destination filename.

B.

The only supported export destination is Google Cloud Storage.

C.

Data can only be exported in JSON or Avro format.

D.

The only compression option available is GZIP.

Full Access
Question # 48

What is the recommended action to do in order to switch between SSD and HDD storage for your Google Cloud Bigtable instance?

A.

create a third instance and sync the data from the two storage types via batch jobs

B.

export the data from the existing instance and import the data into a new instance

C.

run parallel instances where one is HDD and the other is SDD

D.

the selection is final and you must resume using the same storage type

Full Access
Question # 49

Which of the following are feature engineering techniques? (Select 2 answers)

A.

Hidden feature layers

B.

Feature prioritization

C.

Crossed feature columns

D.

Bucketization of a continuous feature

Full Access
Question # 50

Your company handles data processing for a number of different clients. Each client prefers to use their own suite of analytics tools, with some allowing direct query access via Google BigQuery. You need to secure the data so that clients cannot see each other’s data. You want to ensure appropriate access to the data. Which three steps should you take? (Choose three.)

A.

Load data into different partitions.

B.

Load data into a different dataset for each client.

C.

Put each client’s BigQuery dataset into a different table.

D.

Restrict a client’s dataset to approved users.

E.

Only allow a service account to access the datasets.

F.

Use the appropriate identity and access management (IAM) roles for each client’s users.

Full Access
Question # 51

Your company is streaming real-time sensor data from their factory floor into Bigtable and they have noticed extremely poor performance. How should the row key be redesigned to improve Bigtable performance on queries that populate real-time dashboards?

A.

Use a row key of the form .

B.

Use a row key of the form .

C.

Use a row key of the form #.

D.

Use a row key of the form >##.

Full Access
Question # 52

You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you do?

A.

Eliminate features that are highly correlated to the output labels.

B.

Combine highly co-dependent features into one representative feature.

C.

Instead of feeding in each feature individually, average their values in batches of 3.

D.

Remove the features that have null values for more than 50% of the training records.

Full Access
Question # 53

Your company’s customer and order databases are often under heavy load. This makes performing analytics against them difficult without harming operations. The databases are in a MySQL cluster, with nightly backups taken using mysqldump. You want to perform analytics with minimal impact on operations. What should you do?

A.

Add a node to the MySQL cluster and build an OLAP cube there.

B.

Use an ETL tool to load the data from MySQL into Google BigQuery.

C.

Connect an on-premises Apache Hadoop cluster to MySQL and perform ETL.

D.

Mount the backups to Google Cloud SQL, and then process the data using Google Cloud Dataproc.

Full Access
Question # 54

You set up a streaming data insert into a Redis cluster via a Kafka cluster. Both clusters are running on

Compute Engine instances. You need to encrypt data at rest with encryption keys that you can create, rotate, and destroy as needed. What should you do?

A.

Create a dedicated service account, and use encryption at rest to reference your data stored in your

Compute Engine cluster instances as part of your API service calls.

B.

Create encryption keys in Cloud Key Management Service. Use those keys to encrypt your data in all of the Compute Engine cluster instances.

C.

Create encryption keys locally. Upload your encryption keys to Cloud Key Management Service. Use those keys to encrypt your data in all of the Compute Engine cluster instances.

D.

Create encryption keys in Cloud Key Management Service. Reference those keys in your API service calls when accessing the data in your Compute Engine cluster instances.

Full Access
Question # 55

You have a data pipeline with a Dataflow job that aggregates and writes time series metrics to Bigtable. You notice that data is slow to update in Bigtable. This data feeds a dashboard used by thousands of users across the organization. You need to support additional concurrent users and reduce the amount of time required to write the data. What should you do?

Choose 2 answers

A.

Configure your Dataflow pipeline to use local execution.

B.

Modify your Dataflow pipeline lo use the Flatten transform before writing to Bigtable.

C.

Modify your Dataflow pipeline to use the CoGrcupByKey transform before writing to Bigtable.

D.

Increase the maximum number of Dataflow workers by setting maxNumWorkers in PipelineOptions.

E.

Increase the number of nodes in the Bigtable cluster.

Full Access
Question # 56

Government regulations in the banking industry mandate the protection of client’s personally identifiable information (PII). Your company requires PII to be access controlled encrypted and compliant with major data protection standards In addition to using Cloud Data Loss Prevention (Cloud DIP) you want to follow Google-recommended practices and use service accounts to control access to PII. What should you do?

A.

Assign the required identity and Access Management (IAM) roles to every employee, and create a single service account to access protect resources

B.

Use one service account to access a Cloud SQL database and use separate service accounts for each human user

C.

Use Cloud Storage to comply with major data protection standards. Use one service account shared by all users

D.

Use Cloud Storage to comply with major data protection standards. Use multiple service accounts attached to IAM groups to grant the appropriate access to each group

Full Access
Question # 57

Your startup has never implemented a formal security policy. Currently, everyone in the company has access to the datasets stored in Google BigQuery. Teams have freedom to use the service as they see fit, and they have not documented their use cases. You have been asked to secure the data warehouse. You need to discover what everyone is doing. What should you do first?

A.

Use Google Stackdriver Audit Logs to review data access.

B.

Get the identity and access management IIAM) policy of each table

C.

Use Stackdriver Monitoring to see the usage of BigQuery query slots.

D.

Use the Google Cloud Billing API to see what account the warehouse is being billed to.

Full Access
Question # 58

Why do you need to split a machine learning dataset into training data and test data?

A.

So you can try two different sets of features

B.

To make sure your model is generalized for more than just the training data

C.

To allow you to create unit tests in your code

D.

So you can use one dataset for a wide model and one for a deep model

Full Access
Question # 59

Which of these sources can you not load data into BigQuery from?

A.

File upload

B.

Google Drive

C.

Google Cloud Storage

D.

Google Cloud SQL

Full Access
Question # 60

Cloud Bigtable is Google's ______ Big Data database service.

A.

Relational

B.

mySQL

C.

NoSQL

D.

SQL Server

Full Access
Question # 61

The CUSTOM tier for Cloud Machine Learning Engine allows you to specify the number of which types of cluster nodes?

A.

Workers

B.

Masters, workers, and parameter servers

C.

Workers and parameter servers

D.

Parameter servers

Full Access
Question # 62

Which of the following is NOT a valid use case to select HDD (hard disk drives) as the storage for Google Cloud Bigtable?

A.

You expect to store at least 10 TB of data.

B.

You will mostly run batch workloads with scans and writes, rather than frequently executing random reads of a small number of rows.

C.

You need to integrate with Google BigQuery.

D.

You will not use the data to back a user-facing or latency-sensitive application.

Full Access
Question # 63

Which methods can be used to reduce the number of rows processed by BigQuery?

A.

Splitting tables into multiple tables; putting data in partitions

B.

Splitting tables into multiple tables; putting data in partitions; using the LIMIT clause

C.

Putting data in partitions; using the LIMIT clause

D.

Splitting tables into multiple tables; using the LIMIT clause

Full Access
Question # 64

To run a TensorFlow training job on your own computer using Cloud Machine Learning Engine, what would your command start with?

A.

gcloud ml-engine local train

B.

gcloud ml-engine jobs submit training

C.

gcloud ml-engine jobs submit training local

D.

You can't run a TensorFlow program on your own computer using Cloud ML Engine .

Full Access
Question # 65

If a dataset contains rows with individual people and columns for year of birth, country, and income, how many of the columns are continuous and how many are categorical?

A.

1 continuous and 2 categorical

B.

3 categorical

C.

3 continuous

D.

2 continuous and 1 categorical

Full Access
Question # 66

You are developing a software application using Google's Dataflow SDK, and want to use conditional, for loops and other complex programming structures to create a branching pipeline. Which component will be used for the data processing operation?

A.

PCollection

B.

Transform

C.

Pipeline

D.

Sink API

Full Access
Question # 67

Which of these is not a supported method of putting data into a partitioned table?

A.

If you have existing data in a separate file for each day, then create a partitioned table and upload each file into the appropriate partition.

B.

Run a query to get the records for a specific day from an existing table and for the destination table, specify a partitioned table ending with the day in the format "$YYYYMMDD".

C.

Create a partitioned table and stream new records to it every day.

D.

Use ORDER BY to put a table's rows into chronological order and then change the table's type to "Partitioned".

Full Access
Question # 68

Suppose you have a table that includes a nested column called "city" inside a column called "person", but when you try to submit the following query in BigQuery, it gives you an error.

SELECT person FROM `project1.example.table1` WHERE city = "London"

How would you correct the error?

A.

Add ", UNNEST(person)" before the WHERE clause.

B.

Change "person" to "person.city".

C.

Change "person" to "city.person".

D.

Add ", UNNEST(city)" before the WHERE clause.

Full Access
Question # 69

Which is not a valid reason for poor Cloud Bigtable performance?

A.

The workload isn't appropriate for Cloud Bigtable.

B.

The table's schema is not designed correctly.

C.

The Cloud Bigtable cluster has too many nodes.

D.

There are issues with the network connection.

Full Access
Question # 70

What are two of the benefits of using denormalized data structures in BigQuery?

A.

Reduces the amount of data processed, reduces the amount of storage required

B.

Increases query speed, makes queries simpler

C.

Reduces the amount of storage required, increases query speed

D.

Reduces the amount of data processed, increases query speed

Full Access
Question # 71

Does Dataflow process batch data pipelines or streaming data pipelines?

A.

Only Batch Data Pipelines

B.

Both Batch and Streaming Data Pipelines

C.

Only Streaming Data Pipelines

D.

None of the above

Full Access
Question # 72

What are two methods that can be used to denormalize tables in BigQuery?

A.

1) Split table into multiple tables; 2) Use a partitioned table

B.

1) Join tables into one table; 2) Use nested repeated fields

C.

1) Use a partitioned table; 2) Join tables into one table

D.

1) Use nested repeated fields; 2) Use a partitioned table

Full Access
Question # 73

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Full Access
Question # 74

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Full Access
Question # 75

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

    The user profile: What the user likes and doesn’t like to eat

    The user account information: Name, address, preferred meal times

    The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Full Access